Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/252
Título : Evaluation of algorithms for traffic sign detection
Autor : López Montiel, Miguel
Otros Autores: Rubio, Yoshio
Sánchez-Adame, Moises
Autor: Orozco Rosas, Ulises
Palabras clave : Detection;Traffic sign;Machine learning;Computer vision;Deep learning;Autonomous vehicles
Sede: Campus Tijuana
Fecha de publicación : 6-sep-2019
Citación : Miguel Lopez-Montiel, Yoshio Rubio, Moisés Sánchez-Adame, Ulises OrozcoRosas, "Evaluation of algorithms for traffic sign detection," Proc. SPIE 11136, Optics and Photonics for Information Processing XIII, 111360M (6 September 2019)
Resumen : Traffic sign detection is a crucial task in autonomous driving systems. Due to its importance, several techniques have been used to solve this problem. In this work, the three more common approaches are evaluated. The first approach uses a model of the traffic sign which is based in color and shape. The second one enhances the image model of the first approach using K-means for color clustering. The last approach uses convolutional neural networks designed for image detection. The LISA Traffic Sign Dataset was used which it was divided into three superclasses: prohibition, mandatory, and warning signs. The evaluation was done using objective metrics used in the state-of-the-art.
URI : doi: 10.1117/12.2529709
Aparece en las colecciones: Ponencias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Evaluation of algorithms for traffic sign detection.pdf7.44 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons