Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1964
Título : Sudoku Solver Acceleration with CUDA
Otros títulos : Revista Aristas Ciencia Básica y aplicada
Autor : Gómez Moreno, Ivannia
Orozco Rosas, Ulises
Picos, Kenia
Palabras clave : Sudoku problem;GPU acceleration;backtracking algorithm;heuristics;parallel programming
Sede: Campus Tijuana
Fecha de publicación : jun-2025
Citación : vol.12;núm. 20
Resumen : The classic Sudoku is a puzzle with simple rules that can become complicated to solve automatically due to the exponential increase in possible solutions as the board size increases. This paper presents an algorithmic solution to solve any size Sudoku incorporating an implementation in CUDA C/C++ that, consequently, leverages parallel programming on a GPU. This involves using threads and processes with shared and distributed memory for various solution strategies. These solution strategies encompass backtracking, where multiple alternatives are tried until reaching a solution, and rule-based algorithms that rely on heuristics to solve Sudokus, among others. Regardless of the implementation approach, it is pertinent to conduct a comparison between the solution achieved with a parallel algorithm utilizing a GPU and a sequential algorithm processed on the CPU. This is done to quantify the performance of the solution. The proposed algorithm managed to accelerate the traditional backtracking approach by up to 7x on a typical 9x9 Sudoku. While getting 7x and 3x reduction on 16x16 and 25x25 boards respectively.
metadata.dc.description.url: http://revistaaristas.tij.uabc.mx/index.php/revista_aristas/article/view/410
URI : https://repositorio.cetys.mx/handle/60000/1964
ISSN : 2007-9478
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Sin confirmar 167801.crdownload570.88 kBUnknownVisualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons