Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1086
Título : Evaluation method of deep learning-based embedded systems for traffic sign detection
Otros títulos : IEEE Access
Autor : López Montiel, Miguel
Orozco Rosas, Ulises
Sánchez-Adame, Moises
Picos, Kenia
Montiel, Oscar
Otros Autores: CETYS Universidad
Instituto Politécnico Nacional, CITEDI-IPN
Palabras clave : Traffic sign detection;Deep learning;Hardware acceleration;Computer vision;Autonomous vehicles;Embedded systems;Digital systems
Sede: Sistemas
Fecha de publicación : 19-jul-2021
Citación : 9;2021
Resumen : Traffic Sign Detection (TSD) is a complex and fundamental task for developing autonomous vehicles; it is one of the most critical visual perception problems since failing in this task may cause accidents. This task is fundamental in decision-making and involves different internal conditions such as the internal processing system or external conditions such as weather, illumination, and complex backgrounds. At present, several works are focused on the development of algorithms based on deep learning; however, there is no information on a methodology based on descriptive statistical analysis with results from a solid experimental framework, which helps to make decisions to choose the appropriate algorithms and hardware. This work intends to cover that gap. We have implemented some combinations of deep learning models (MobileNet v1 and ResNet50 v1) in a combination of the Single Shot Multibox Detector (SSD) algorithm and the Feature Pyramid Network (FPN) component for TSD in a standardized dataset (LISA), and we have tested it on different hardware architectures (CPU, GPU, TPU, and Embedded System). We propose a methodology and the evaluation method to measure two types of performance. The results show that the use of TPU allows achieving a processing training time 16.3 times faster than GPU and better results in terms of precision detection for one combination.
metadata.dc.description.url: https://doi.org/10.1109/ACCESS.2021.3097969
URI : https://repositorio.cetys.mx/handle/60000/1086
ISSN : 2169-3536
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
articulo.pdfEvaluation Method of Deep Learning-Based Embedded Systems for Traffic Sign Detection422.42 kBAdobe PDFVista previa

Este ítem está protegido por copyright original

Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons