Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/836
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEscobedo Bravo, Lizbeth Olivia-
dc.contributor.otherHirales Carbajal, Adánes_ES
dc.date.accessioned2020-08-10T17:54:13Z-
dc.date.available2020-08-10T17:54:13Z-
dc.date.issued2020-01-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/836-
dc.description.abstractWorldwide Fetal-Maternal morbidity and mortality is frightfully high. Most of thesediseases occur in developing countries. One of the main reasons for this problem, after gestationalhypertension and complications in childbirth, is infections. Urinary Tract Infections (UTI) during pregnancy isone of the main causes for fetal-maternal morbidity and mortality in Mexico. Among others, the pervasivenessand heterogeneity of data in Electronic Medical Records (EMR) complicates early diagnosis and treatment ofUTI.OBJECTIVES: Our goal is extract empirical knowledge, in the form of association rules, that generalizesymptomatology and treatment of UTI patients with positive and nagative diagnosis.METHODS: In this study, we developed a criterion to extract words and expressions that uniquely characterizeeach patient class. We extracted association rules from EMRs and evaluated its level of correspondencebetween the rules and the extracted word sets.RESULTS: By defining a bound on word frequency usage and evaluating the positive to negative word ratio wewere able to identify word sets that uniquely characterize each patient class. A bound of 47 enabled extractionof 25 unique words and expressions for each patient class. Further, approximately 17% and 27% of associationrules drew terms from each word set correspondingly.CONCLUSION: This work seeks to promote the creation of more effective criterions to extract features, fromEMRs, that improve characterization of patients and that ultimately lead to a more accurate diagnosis of UTIs.es_ES
dc.language.isoen_USes_ES
dc.relation.ispartofseries;5-
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectPregnancy healthes_ES
dc.subjectPervasive healthes_ES
dc.subjectDigitization of healthcarees_ES
dc.subjectData analysises_ES
dc.titleTowards early and automatic detection of UrinaryInfection during pregnancyes_ES
dc.title.alternativeEAI Endorsed Transactionses_ES
dc.typeArticlees_ES
dc.description.urlhttps://www.researchgate.net/publication/338907851_Towards_early_and_automatic_detection_of_Urinary_Infection_during_pregnancyes_ES
dc.identifier.doiDOI: 10.4108/eai.13-7-2018.162810-
dc.subject.sedeCampus Tijuanaes_ES
Aparece en las colecciones: Artículos de Revistas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Towards erly and automatic detection of Urinary Infection.png145.15 kBimage/pngVista previa
Visualizar/Abrir


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons