Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.cetys.mx/handle/60000/1974
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPicos, Kenia-
dc.contributor.authorOrozco Rosas, Ulises-
dc.contributor.authorRuiz, Kevin-
dc.date.accessioned2025-10-02T19:22:08Z-
dc.date.available2025-10-02T19:22:08Z-
dc.date.issued2025-10-
dc.identifier.citationPicos, K., Orozco-Rosas, U., Ruiz, K. (2025). An Intelligent System Design for Automated Quality Control of Agricultural Produce Based on Computer Vision. In: Montiel Ross, O.H., Orozco-Rosas, U., Martínez-Vargas, A. (eds) Artificial Intelligence and Quantum Computing: Early Innovations. Volume 1. Studies in Computational Intelligence, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-031-85614-3_26es_ES
dc.identifier.issn978-3-031-85613-6-
dc.identifier.issnOnline ISBN 978-3-031-85614-3-
dc.identifier.urihttps://repositorio.cetys.mx/handle/60000/1974-
dc.description.abstractCurrently, the agricultural industry exports a large number of fruits and vegetables, which require a good classification and selection for quality control. This process is commonly carried out manually, where workers visually verify if the product has defects and the appropriate size, shape, and color for its final packaging. Although it is carried out semi-automatically in some industries, this is the most traditional way of exporting in the country. The aforementioned entails a considerable duration in production and the risk of not meeting quality specifications. Therefore, this work proposes the design of an efficient system that is capable of automatically selecting and validating agricultural produce in a more controlled manner. In this research, we focus on the inspection of cucumbers using computer vision techniques for the classification of shape, size, and color in an automated manner. Experimental tests are carried out with artificial intelligence tools. These experiments are carried out on-site using a single high-range industrial camera. The proposed system is evaluated using objective metrics yielding high efficiency for practical applications in agricultural produce inspection.es_ES
dc.language.isoen_USes_ES
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 México*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/mx/*
dc.subjectProduct inspectiones_ES
dc.subjectComputer visiones_ES
dc.subjectArtificial intelligencees_ES
dc.subjectAgriculture applicationses_ES
dc.subjectDeep learninges_ES
dc.titleArtificial Intelligence and Quantum Computing: Early Innovations. Volume 1. Studies in Computational Intelligence,es_ES
dc.typeBook chapteres_ES
dc.subject.sedeCampus Tijuanaes_ES
dc.publisher.editorialSpringer, Chames_ES
dc.title.chapterAn Intelligent System Design for Automated Quality Control of Agricultural Produce Based on Computer Visiones_ES
Aparece en las colecciones: Capítulos de Libro

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Este ítem está protegido por copyright original



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons