https://repositorio.cetys.mx/handle/60000/1974
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Picos, Kenia | - |
dc.contributor.author | Orozco Rosas, Ulises | - |
dc.contributor.author | Ruiz, Kevin | - |
dc.date.accessioned | 2025-10-02T19:22:08Z | - |
dc.date.available | 2025-10-02T19:22:08Z | - |
dc.date.issued | 2025-10 | - |
dc.identifier.citation | Picos, K., Orozco-Rosas, U., Ruiz, K. (2025). An Intelligent System Design for Automated Quality Control of Agricultural Produce Based on Computer Vision. In: Montiel Ross, O.H., Orozco-Rosas, U., Martínez-Vargas, A. (eds) Artificial Intelligence and Quantum Computing: Early Innovations. Volume 1. Studies in Computational Intelligence, vol 1200. Springer, Cham. https://doi.org/10.1007/978-3-031-85614-3_26 | es_ES |
dc.identifier.issn | 978-3-031-85613-6 | - |
dc.identifier.issn | Online ISBN 978-3-031-85614-3 | - |
dc.identifier.uri | https://repositorio.cetys.mx/handle/60000/1974 | - |
dc.description.abstract | Currently, the agricultural industry exports a large number of fruits and vegetables, which require a good classification and selection for quality control. This process is commonly carried out manually, where workers visually verify if the product has defects and the appropriate size, shape, and color for its final packaging. Although it is carried out semi-automatically in some industries, this is the most traditional way of exporting in the country. The aforementioned entails a considerable duration in production and the risk of not meeting quality specifications. Therefore, this work proposes the design of an efficient system that is capable of automatically selecting and validating agricultural produce in a more controlled manner. In this research, we focus on the inspection of cucumbers using computer vision techniques for the classification of shape, size, and color in an automated manner. Experimental tests are carried out with artificial intelligence tools. These experiments are carried out on-site using a single high-range industrial camera. The proposed system is evaluated using objective metrics yielding high efficiency for practical applications in agricultural produce inspection. | es_ES |
dc.language.iso | en_US | es_ES |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 México | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/mx/ | * |
dc.subject | Product inspection | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Agriculture applications | es_ES |
dc.subject | Deep learning | es_ES |
dc.title | Artificial Intelligence and Quantum Computing: Early Innovations. Volume 1. Studies in Computational Intelligence, | es_ES |
dc.type | Book chapter | es_ES |
dc.subject.sede | Campus Tijuana | es_ES |
dc.publisher.editorial | Springer, Cham | es_ES |
dc.title.chapter | An Intelligent System Design for Automated Quality Control of Agricultural Produce Based on Computer Vision | es_ES |
Aparece en las colecciones: | Capítulos de Libro |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons