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Abstract. This study evaluates the performance of
a Quantum Genetic Algorithm (QGA) executed on
quantum devices. The algorithm was implemented in
MATLAB and Python and deployed on the Amazon
Web Services (AWS) platform. The QGA was
utilized to optimize a set of continuous single-variable
functions. The implementation employed the Hadamard
quantum gate to initialize the population and the Ry

rotation gate for mutation and crossover. The findings
revealed significant differences in execution time and
costs were observed between the two implementations,
undescoring the performance of quantum devices
available on AWS. The results demonstrate that the
QGA can achieve optimal solutions in a few generations,
suggesting its potential for efficiently solving complex
problems. However, the costs and availability of quantum
devices remain restrictive. This work exemplifies
the potential of leveraging AWS cloud-based quantum
computing platforms for the research and development
of quantum algorithms.

Keywords. Quantum computing, quantum genetic
algorithms, mathematical optimization, quantum device
on AWS, quantum metaheuristic algorithm.

1 Introduction

Quantum computing has experienced significant
growth in both the development of devices and the
application of quantum algorithms across various
fields [8]. One prominent area is optimization,
which can be approached using different methods,
including evolutionary algorithms [25].

In the context of our work, optimization
involves the process of maximizing or minimizing
a continuous single-variable function. The concept
of quantum evolutionary algorithms was first
introduced by Narayanan and Moore in 1996 [19].
Their work laid the groundwork by applying the
principles of quantum mechanics to the evolution
of a quantum particle over time.

This idea has been enriched over the years,
and various applications in quantum simulators
have existed. For example, some studies
such as [3, 10] applied this approach to
combinatorial optimization, while [17] used it for
optimization functions.

Different proposals for applying this method
are generally discussed in works like [14, 18].
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Algorithm 1 Quantum genetic algorithm (QGA)

Require: g, sp ▷ g: amount of generations, sp:
population size

Ensure: The best solution b
1: procedure QGA(g, sp)
2: t← 0
3: Set up a quantum population Qt(sp) with

quantum gate H
4: Measure each individual in Qt(sp) to create

a population Pt(sp)
5: Save the best solution b in Pt(sp)
6: while t < g do ▷ t: indicate the number of

generation
7: Update Qt(sp − 1) applying a quantum

rotation gate U(∆θj)
8: Measure each individual in Qt(sp− 1) to

create a population Pt(sp − 1)
9: Save the best solution b in Pt(sp − 1)

10: t← t+ 1
11: end while
12: end procedure

Quantum computing offers significant potential for
solving problems that classical computing cannot
efficiently address. However, it is important to
note that current quantum devices are in the NISQ
(Noisy Intermediate-Scale Quantum) era, meaning
that their results may include errors.

These errors can be mitigated by repeating
executions, which unfortunately makes the process
slow and costly. Therefore, the problems
addressed must be adapted to the current
limitations of these quantum devices. As
technology advances, it is anticipated that the need
for repeated measurements will decrease.

Amazon Braket, a service from Amazon Web
Services (AWS), has emerged as a valuable tool
providing access to quantum devices from various
vendors. This platform enables users to work with
different types of quantum devices, as discussed
in Section 3. Access to these quantum devices
can be achieved through Python or MATLAB. In
Section 3 we review the pseudocode of a Quantum
Genetic Algorithm (QGA) that was coded and
executed in MATLAB and Python.

This section details how to establish a
connection to AWS, enabling code execution

on quantum devices. Additionally, Section 4
presents the results of implementation using both
languages. The goal of this study is to compare the
performance of a QGA implemented to maximize
a set of continuous single-variable functions using
both Python and MATLAB.

The structure of this paper is as follows:
Section 2 covers the main concepts and
foundational knowledge employed in this study.
Section 3 explores the implementation details,
algorithms, functional aspects, and provides a
brief cost analysis of using AWS for quantum
computing. Section 4 describes the findings from
applying this methodology with both a simulator
and a quantum device. The final Section 5 includes
the conclusions and suggests potential avenues
for future research.

2 Theoretical Framework

This section presents a review of problem
optimization and fundamentals of quantum
computing that will aid in understanding Quantum
Genetic Algorithms (QGAs).

2.1 Optimization Problem

Optimization problems are prevalent across
various fields, including engineering, logistics,
finance, and artificial intelligence. These problems
involve finding the optimal solution, often within
complex constraints or large solution spaces [20].
Traditional optimization techniques, such as linear
programming or gradient descent, are effective for
well-structured problems but frequently struggle
with highly nonlinear, multi-modal, or combinatorial
optimization challenges [6].

These conventional methods often encounter
difficulties in identifying optimal solutions within a
practical time frame. This is where metaheuristic
methods become essential [4]. Metaheuristic
methods encompass a class of optimization
algorithms designed to tackle complex and
computationally demanding optimization problems.
Unlike deterministic approaches, metaheuristics
rely on heuristic or rule-of-thumb strategies,
avoiding explicit mathematical models [11]. These
algorithms explore solution spaces by adeptly
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Table 1. Values and conditions for rotation ∆θi
1. Xi

depict the i − th decimal value proposed. Bi depict the
i− th decimal value stored

xij bij f(Xi) ≥ f(Bi) ∆θi

0 0 false 0

0 0 true 0

0 1 false 0

0 1 true −0.05π
1 0 false −0.01π
1 0 true 0.025π

1 1 false 0.005π

1 1 true 0.025π

Algorithm 2 Update of the QGA

Require: qi, xi, bi ▷

qi quantum individual, xi represents the best
element, while bi represents the new candidate
element in binary form. ▷ f(Bi) and f(Xi)
where Bi and Xi are decimal values

Ensure: Rate of evolution
1: procedure UPDATE(qi)
2: i← 0
3: while i < m do ▷ m is the length of qi
4: Calculate ∆θi and s(α′

i,β
′
i) with to

Table 1
5: Update qi by applying :
6: [α′

iβ
′
i]
T = U(∆θi)[αi,βi]

T

7: i← i+ 1
8: end while
9: qi = q′i

10: end procedure

balancing exploration to discover new areas
of the landscape and exploitation to refine
promising solutions.

The strength of metaheuristics lies in their
adaptability and versatility, as they can be
customized for various problem types and
constraints. Additionally, they excel in solving
real-world challenges where exact solutions
are often impractical due to computational
limitations [11]. As technology advances and
optimization problems become increasingly

complex, the role of metaheuristics continues
to expand, establishing them as indispensable
tools for researchers and practitioners tackling
real-world optimization issues.

Furthermore, quantum computing and recent
proposals of quantum metaheuristics enhance the
search process within the optimization landscape,
opening new frontiers for addressing previously
unsolvable problems [7].

The objective of optimization is to find the best
possible solution, referred to as feasible solutions,
which are measured using numerical functions,
referred to as objective functions [15]. In the
feasible solution set, the solution that yields the
best objective function value is referred to as
the optimal solution [5]. The formal definition is
shown in:

Let f : X → R be a function where X ⊆ R
n

n−dimensional in the form x = [x1, . . . ,xn]
T The

aim is to:

f(x)max or f(x)min,

x ∈ Xmax x ∈ Xmin,
(1)

where xj , j = 1, . . . ,n is identified as a decision

variable, X refers to the feasible region and f is
the objective function.

2.2 Quantum Computing Fundamentals

In quantum computing, the basic unit of information
is a quantum bit commonly called a qubit,
which has a form |ψ⟩[21]. Quantum computing
mathematically represents qubits using Dirac
notation, also referred to as bra-ket notation. For

example, the ket |i⟩ =
[

1 i
]T

where i ∈ C, and the

ket |1⟩ =
[

0 1
]T

. A qubit is a linear combination
of |0⟩ and |1⟩.

Bra and ket vectors are complex vectors within
the Hilbert space, existing in a dual space. The
notation ⟨ψ| indicates a bra, which is the complex
conjugate transpose of the ket vector |ψ⟩. Hence,

⟨ψ| = |ψ⟩†, where the symbol † signifies the
complex conjugate transpose operation.

In quantum computing, computational bases
are fundamental for representing and manipulating
information. The most common computational
basis consists of the states |0⟩ and |1⟩, which are
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Table 2. Types of quantum computers: Available quantum devices on Amazon braket. Source: The table is from
the chapter [22]

Companies Quantum device names Quantum computing technologies

IonQ Harmony, Aria-1

Through the utilization of precise laser pulses,
this system monitors ions that are confined in
space to execute quantum gate operations and
measurements. The systems are equipped with 11
and 25 qubits respectively.

Oxford Quantum Circuits (OQC) Lucy, Aspen, M-3
Its technology utilizes superconducting quantum
processors, having 8 qubits. In contrast, Rigetti is
composed of two chips with a total of 79 qubits.

QuEra Computing Aquila

The principle behind this technology is to use lasers
to arrange and excite neutral atoms into highly
energetic states. Their quantum computer consists
of 256 qubits operating in analog mode. Analog
Hamiltonian Simulation is his paradigm.

analogous to the binary bits “0” and “1” in classical
computing. These states serve as the foundation
for encoding and processing quantum information.
The superposition principle in quantum mechanics
permits a qubit to be in a linear combination of
the two fundamental states, |0⟩ and |1⟩. This
relationship is illustrated in Eq. 2:

|ψ⟩ = α |0⟩+ β |1⟩ with α,β ∈ C. (2)

In Eq. 2, α and β are complex numbers
representing the probability amplitudes. When
measuring a qubit, the likelihood of finding the qubit
in state |0⟩ or |1⟩ is given by the square of the
absolute value of α or β, respectively.

The normalization condition requires that the
sum of these squares equals one: |α|2 + |β|2 = 1.
Classical computers use registers to store bits,
likewise, quantum computers register and store
qubits. Despite this, a quantum qubit register and
a classical bit register differ in important ways.

Quantum bits, unlike classical bits, are in
a superposition of states. This enables them
to represent both “0” and “1” simultaneously,
enabling quantum computers to handle multiple
possibilities simultaneously. Furthermore, qubits
are capable of becoming entangled, enabling
a profound link between their states, despite
being physically separated, which facilitates more
efficient calculations. Eq. 3 represents a quantum

register of size n mathematically. A tensorial
product of two states (vectors) is represented by
the symbol ⊗:

|Ψ⟩ = |ψ1⟩ ⊗ ...⊗ |ψn⟩ = |101⟩ = |1⟩ ⊗ |0⟩ ⊗ |1⟩ ,

=

(

0
1

)

⊗

(

1
0

)

⊗

(

0
1

)

=

























0
0
0
0
0
1
0
0

























.
(3)

Quantum gates are fundamental in quantum
computing. They function similarly to classical
logic gates in traditional computing, enabling
control over the state of one or more qubits.
Thanks to quantum gates, quantum computers
can carry out specific tasks much faster than
classical computers, as quantum states can exist
in superposition and be entangled [27].

Operations can be performed on individual
qubits or on groups of qubits, known as quantum
registers. Some one-qubit quantum gates originate
from the Pauli set. For instance, the X =

[

0 1

1 0

]

gate, which induces rotations around the X-axis,
and the Y =

[

0 −i

i 0

]

gate, which causes rotations
around the Y -axis.

Another significant one-qubit gate frequently
used to bring a qubit into a superposition state
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Fig. 1. The functions of the QGA are illustrated in the
following diagram. (a) The quantum circuit for initializing
the first population. (b) The quantum circuit for mutation
and crossover operators. Figures taken from [22]

is the Hadamard gate, H = 1√
2

[

1 1

1 −1

]

. This

superposition creates equal probabilities for the
qubit to be in the |0⟩ or |1⟩ states, with the |1⟩ state
having a relative phase difference of π radians.

A one-qubit quantum gate acts on a quantum
state |ψ⟩ as U |ψ⟩, where U is a quantum operator
such as the quantum gate H. For instance,
applying the Hadamard gate H to the quantum
state |0⟩ yields H |0⟩ = 1√

2

[

1 1

1 −1

] [

1

0

]

= 1√
2

[

1

1

]

,

which simplifies to H |0⟩ = |0⟩+|1⟩√
2

. Another type

of one-qubit gate is the rotation gate, which can be
represented as:

Rx(θ) =







cos
θ

2
−i sin θ

2

−i sin θ
2

cos
θ

2






,

Ry(θ) =







cos
θ

2
− sin

θ

2

sin
θ

2
cos

θ

2






,

Rz(θ) =









e
−
iθ

2 0

0 e

iθ

2









.

(4)

In Eq.4, Rx(θ) represents a rotation about the
x-axis, Ry(θ) denotes a rotation about the y-axis,
and Rz(θ) indicates a rotation around the z-axis.

The variable θ stands for the angle of rotation
for each respective axis. As mentioned earlier,
a quantum register consists of multiple qubits
grouped together as a single entity.

Similar to single quantum gates, in a quantum
register, a quantum gate denoted as Ur can
operate on the quantum register state |ψr⟩n of
n qubits in the form Ur |ψr⟩n. For example,
the application of the H⊗2 gate (which is two
Hadamard gates in parallel, i.e., H ⊗ H) on
a two-qubit register |ψr⟩2 is represented as

H⊗2 |ψr⟩2, which can be expressed as:

H⊗2 |ψr⟩2 =
1

2









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

















S0

S1

S2

S3









,

=
1

2









S′
0

S′
1

S′
2

S′
3









.

(5)

In this case, S0 · · ·S3 represent the quantum
states of |ψr⟩2, and S′

0 · · ·S′
3 denote the quantum

states that result from applying the quantum gate
H⊗2 to the state |ψr⟩n. In general, for a n-qubit
state in the computational basis |0 · · · 0⟩n, applying
the Hadamard gate to each qubit results in:

|ψr⟩n =
1√
2n

(|0 · · · 000⟩+ |· · · 001⟩+ · · ·+ |1 · · · 111⟩). (6)

This operation with the Hadamard gate is
crucial, as many quantum algorithms use it as an
initial state. It enables all the 2n orthogonal qubits
in the basis states |0⟩ and |1⟩ to be placed into
a superposition state with equal probabilities. In
general, the procedure can be expressed as:

H⊗n |x⟩n =

∑

z(−1)x⊙z |z⟩√
2n

, (7)

where x⊙ z denote the bit-by-bit inner product of x
and z.

Measurement plays a fundamental role in
quantum mechanics, offering insights into physical
observables and their associated probabilities. It is
essential to understand that measuring a quantum
system disturbs it, causing an irreversible change
in its state. In quantum computing, measurement is
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Table 3. Cost by quantum device per quantum task and
shot. Information taken from Amazon braket pricing

QPU family
Quantum task

price (USD)

Per-shot

price (USD)2

Harmony $0.30 $0.01

Aria $0.30 $0.03

Lucy $0.30 $0.00035

Aspen-M3 $0.30 $0.00035

Table 4. Description of total quantum task, final shots,
and final cost per experiment

Experiment

(shots)

Total

quantum

tasks

Total

shots

Final

cost

(USD)

MATLAB (100) 583 58,300 $ 803

Python (1,000) 534 534,000 $ 4,211

Total cost $ 5,014

particularly significant for retrieving the information
encoded within the computational system. In
the domain of quantum mechanics, a range of
measurement models are utilized to illustrate the
interaction between a quantum system and a
measurement apparatus, as well as the acquisition
of measurement outcomes [21].

A variety of measurement models are used
such as the Projection Model, Expectation Value
Model, State Collapse Model, Statistical Model,
and Eigenvalue and Eigenspace Model.

The standard notation of measurements
consists of a measurement operator represented
as Mm, where m is used as an index for a
possible measurement outcome. If state is |ψ⟩, the
probability of getting a measurement result m is as
the following:

Pr(m) = ⟨ψ|M†
mMm |ψ⟩ . (8)

Upon obtaining this measurement, the
subsequent state will be:

|ψ′⟩ = Mm |ψ⟩
√

⟨ψ|M†
mMm |ψ⟩

. (9)

Quantum computing depends on measuring
a group of qubits “in the computational basis”,

which consists of the states |0⟩ and |1⟩. In this
particular scenario, we consider the spin direction
of individual qubits in the quantum memory register
along the z-axis of the Bloch sphere, which
traverses both the North and South poles of
the sphere.

The results of these measurements indicate
that each qubit is either aligned with the z-axis,
with “spin-up”, or it is in opposition, with
“spin-down”, which corresponds to state |0⟩ and
|1⟩ respectively. If this measure is applied to each
qubit in a quantum memory register comprising
n-qubits, will be obtained one of 2n possible bit
strings configurations.

The generation of different outcomes is
contingent upon the superposition of each
binary string configuration present in the
register immediately before measurement. To
illustrate this, let us consider an n-qubit quantum
memory register which is in the normalized state
∑2

n−1

i=0
ci |i⟩ (where |i⟩ represents a bit-string).

There will be variability in the outcome
depending on the magnitude of the amplitudes
ci and whether it is making a full measurement
(measuring all the qubits) or a partial measurement
(measuring only a few qubits). The result will be |i⟩,
with a probability of |ci|2 for each state.

2.3 Quantum Genetic Algorithm

An evolutionary algorithm represents an
optimization approach inspired by biological
evolution, used to identify or approximate
solutions to intricate problems spanning various
disciplines [16]. These algorithms commence with
a population of potential solutions, subjecting each
to fitness evaluation via a predefined function.

Selection for reproduction is based on fitness,
leading to the generation of new solutions through
crossover and mutation. This iterative process
unfolds across multiple generations [11]. Our
work focuses on Quantum Genetic Algorithms
(QGAs) [9], which are rooted in Quantum-Inspired
Genetic Algorithms (QIGAs) [19]. The two
types of algorithms are grounded in quantum
principles but have distinct implementation and
computational frameworks. Quantum-Inspired
Genetic Algorithms (QIGAs) are classical
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Table 5. Test functions

Function Global maximum

(x, f(x)), x ∈ [0, 127]

f1(x) =
x

10
· sin(

x

10
) (79.7867, 7.9167)

f2(x) =
x

2
+ 5 (127.0, 68.5000)

f3(x) = −
cos(x) · x2

10
+ 3x (122.5400, 1,868.9900)

f4(x) =
(x− 135π)(sin(

x+ 135π

10
))

10
(15.4535, 39.2826)

f5(x) =
−x2

10
+ 3x (15.0800, 22.5000)

f6(x) =











sin(x− 20)

x− 20
if x ̸= 20

0.9999 if x = 20

(19.9946, 0.9999)

Table 6. The best maximum found in two executions, one
with 10 runs and the other with 40 runs, each consisting
of 15 generations, was compared between Harmony and
SV1 versus the local simulator on MATLAB

Function fn
AWS Device

MATLAB

Local Simulator

MATLAB

f1 (80.0625, 7.9136) (81.9910, 7.9167)

f2 (124.0000,67.0000) (127.0000,68.5000)

f3 (116.1875,1696.7312) (122.6571,1,868.9434)

f4 (15.4375, 39.2826) (18.6126, 39.2826)

f5 (15.0000, 22.5000) (15.0762, 22.5000)

f6 (20.0625, 0.9993) (19.9775, 0.9999)

algorithms that run on conventional computers.
They are inspired by quantum principles and
seek to replicate quantum effects using classical
computing methods [23].

In contrast, QGAs are specifically created
to operate on authentic quantum computers,
exploiting the complete potential of quantum
characteristics. They possess the capacity
for substantial acceleration in solving certain
problems, however, their practical utility is currently
constrained by the early stage of quantum
hardware development and limited accessibility.

The specific approach of this study is
implementing a Quantum Genetic Algorithm
(QGA) using two programming languages that
allow connection to quantum computers via AWS.
In MATLAB, the ‘quantum’ package developed in
2023 was used. For Python, the Amazon Braket

library was utilized. It is important to mention that

these tools also allow simulations to be run on
personal computers.

As discussed in [18], we have customized QGA
for execution on quantum computers. We take the
proposal developed in [22] where “ qi characterizes
a quantum system |ψi⟩ that encompasses 2m

simultaneous states, as expressed in Eq. 10. Here,
m represents the genetic composition of each
individual, and i signifies the population size”:

|ψi⟩ =
[

α1 α2 . . . αm

β1 β2 . . . βm

]

= qi. (10)

The outcome will produce a quantum
population structured in the following manner:

[

α1 α2 . . . αm

β1 β2 . . . βm

]

q1

,

[

α1 α2 . . . αm

β1 β2 . . . βm

]

q2

,

...
[

α1 α2 . . . αm

β1 β2 . . . βm

]

qi

.

(11)

As a result, in [22], Algorithm 1 and Algorithm 2
were developed. The Algorithm 1 requires two
elements: the total amount to the evolution of
population, i.e., generations, g, and the population
size sp → i. In more detail on line 2, the generation
number t is adjusted to 0.

In line 3, we applied the quantum Hadamard
gate to all the qubits, as defined in Eq. 7 to
produce equal chance distributions for all potential
individuals. In line 4, we obtain a classical
population by measuring all individuals in the
current population. In line 5, we store the best
solution in the current population in “b”.

The while-loop, spanning from lines 6 to 10,
runs continuously as long as the generation
counter remains less than the maximum number,
indicated as “g”. The process involves generating a
new quantum population using the best solution “b”
in line 7, followed by an update using Algorithm 2.
A new classical population is then formed by
measuring the individuals obtained in line 7 and
line 8. In line 9, the best solution from the
entire process is saved as “b”. Additionally, the
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(a)

(b)

Fig. 2. Plot of the best and average values as a function
of generation. The algorithm converged in the early
generations. (a) Function f1 and (b) Function f2 with
15 generations on Harmony

generation counter is incremented at the end.
The mutation is applied using the Ry gate, which
consists of two parameters: the qubit of the i − th
individual to which a certain rotation will be applied,
and the degrees of rotation, assigned according to
Table 1.

In [22] explained that “ Algorithm 2 provides the
required rotation angle that will eventually modify
the amplitude probability to change individual
qubits of the quantum chromosomes.

The algorithm relies on Table 1 to select the
appropriate angle for its use in Eq. 12; this
updates the corresponding qubit in the quantum
chromosome”. The original strategy proposed
in [10] to rotate the angle was modified as shown
in Table 1:

[

α′
xβ

′
x

]

=

[

cos(∆θi) − sin(∆θi)
sin(∆θi) cos(∆θi)

] [

αx

βx

]

. (12)

For example, the way that we adapted the
quantum inspiration was to take only the i − jth

values and compare them, assigning a rotation
based on said comparison, trying to ensure
convergence towards a better individual. Suppose
you have the best individual bi = 10111110011 and
the new individual obtained is xi = 10110110110
plus their respective decimal values are Xi and
Bi. If we will be taken xij = 1 and bij = 1, with
i = 1 and j = 1. f(Xi) and f(Bi) are compared,
using the Table 1, if f(Xi) ≥ f(Bi), it will assign
∆θi = 0.025π otherwise 0.005π.

3 Platform Amazon Web Service

AWS platform is designed to connect companies
and customers who use and develop software
for various purposes. One development within
the AWS platform is Amazon Braket which was
designed for research and applications in the area
of quantum computing. D-Wave was the first
device available in the launch of this platform
on August 12, 2020. At present, it offers
access to many quantum hardware development
companies. The Amazon Braket name derives
from the quantum mechanics term “bra-ket”.

Currently, it provides access to quantum
hardware developed by the companies listed
in Table 2. By using this service, you can
explore and design quantum algorithms such as
Grover, Bernstein-Vazirani, and Deutsch-Jozsa,
among others, execute them in different quantum
simulators, run them on different quantum
computers, and even demonstrate concepts about
quantum computing.

Furthermore, it integrates Python notebook
environments as well as MATLAB and PennyLane
platforms. The way of working is in 3 stages:
build, test, and execute. In addition, Amazon
Braket enables the storage of all execution
results and the running of algorithms without the
requirement for individual configurations to specific
device providers.

That is, it is enough to indicate the name
of the quantum device that will be used. This
makes it a convenient and easy-to-use platform
for quantum computing. However, it is important
to carefully review the available features of each
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(a)

(b)

Fig. 3. Plot of the best and average values as a
function of generation. The algorithm converged in
the early generations. (a) Function f3 on Harmony

and (b) Function f4 on Simulator SV1 with 15
generations, respectively

company, since some devices do not support
certain quantum operations.

This is because the supplier companies
constantly update their quantum devices, and it
takes time for this information to reach AWS. The
circuit model is currently used as the foundation
for representing and executing quantum operations
by several well-established universal quantum
computing platforms.

Quantum operations are depicted as quantum
gates in this model, and computations are
arranged as a series of these gates. Some
quantum computing platforms that implement this
programming paradigm include “IBM Quantum
Experience” [26], “Google’s Sycamore” [1], and
“Rigetti’s quantum computing platform” [12].
However, with AWS it is possible to have access
to different kinds of hardware quantum. In [22] it

is detailed in Table 2 form some characteristics of
quantum devices available with this platform.

Furthermore, it also explains the offered access
to three simulators, SV1, DM1, and TN1, which use
AWS resources. SV1 is a tensor network simulator
with 50 qubits, DM1 is a vector state simulator
with 34 qubits, and TN1 uses a density matrix with
17 qubits.

It is pertinent to mention that quantum
gates work in the same manner regardless of
the programming language used, whether it is
MATLAB or Python. Qubits are manipulated by
quantum gates through the use of pulses that are
sent to them.

As a result of these pulses, a wave is generated
that is triggered by a signal connected to an
input port on the hardware. Different parameters
make up a signal such as amplitude, frequency,
and duration.

A quantum circuit is referred to as a quantum
task. In this work, the quantum tasks represent
the initial population operator, mutations, and
crossovers. Each of these genetic operators is
run for n generations (iterations) per execution
to determine which result is most likely to
be obtained.

Furthermore, for each quantum task, a certain
number of measurements (shots) must be taken
to mitigate error. The required number of shots
will vary depending on the chosen quantum device.
This refers to obtaining the measurement.

Although, the number of shots can be
customized to suit your needs and error mitigation.
The Amazon website recommends a minimum of
2,500 shots per quantum task for the Aria-1 device.
In particular, the executions in MATLAB had 100
shots, while the experiment with Python had 1,000.

This number of shots was used to stay within
the project budget. AWS is a versatile platform
that has grown and adapted to the needs of
developers and emerging technologies. This
company provides a variety of services, including
the management of large databases, with high
security until their processing. In addition to
the accessibility of high-performance computing,
such as machine learning and quantum computing.
However, it is important to review the costs involved
in each of these tools.
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(a)

(b)

Fig. 4. Plot of the best and average values as a function
of generation. The algorithm converged in the early
generations. (a) Function f5 and (b) Function f6 with
15 generations on simulator SV1

3.1 Implementation of QGA on Quantum
Device in AWS

Referring to the design explained in Section 2.3,
the resulting quantum circuits are depicted in
Figure 1. For the first quantum population, we
applied the Hadamard quantum gate described
in Eq. 7. To achieve the quantum mutation and
crossover processes, we used the Ry(θ) quantum
gate described in Eq. 12.

The characteristics of QGA are taken from [22]
where is used an array of 11 qubits to correspond
to a single quantum chromosome. The population
is constituted of 10 individuals.

A sequence of m = 11 qubits is defined as a
quantum chromosome qi, where i ≤ 10. Therefore,
we work with size chains of 11, each containing
10 elements. The precision was determined by
the number of qubits available. In this case, 11
qubits were utilized. Among the devices listed

in Table 2, only the Harmony from IonQ was
accessible for MATLAB.

For Python, in addition to the Harmony device,
Aria-1 was also available. The domain was
chosen for values of x between [0.00, 127.00].
To ensure consistency in both implementations,
a quantization method was employed to obtain
decimal values, and they were represented with 4
decimal places after the decimal point.

The implementation of MATLAB with a specific
quantum device is facilitated by the development
of a library called ‘quantum’, which was introduced
in 2023. The connection procedure is initiated
through the command exemplified in Code3.1.
It is noteworthy that the establishment of this
connection necessitates the creation of an Amazon
Web Services account. This applies to both Python
and MATLAB, although the process differs for each.

loadenv ( ’ awsAccount . env ’ )

reg ion = ” us−east −1 ” ;

bucketStoragePath = ” s3 : / / amazon−braket −name

Bucket / nameFolder / ” ;

deviceARN= ” arn : aws : braket : us−east − 1 : : device /

qpu / ionq / Harmony ” ;

device = quantum . backend . QuantumDeviceAWS

(devARN, Region=region , S3Path=

bucketStoragePath ) ;

% Quantum c i r c u i t example

qcExample = quantumCircu i t ( HGate ( 1 ) ) ;

taskExample = run ( qcExample , device ) ;

wa i t ( taskExample ) ;

measure = fe tchOutput ( taskExample ) ;

% The next l i n e shows r e s u l t s i n a t ab l e from

t ab le ( measure . Counts , measure . MeasuredStates ,

VariableNames =[ ” counts ” , ” States ” ] )

One of the differences between MATLAB and
Python, as demonstrated in Code 3.1, is that
Python requires only a single line of code to set the
session values and select the quantum device after
installing the Amazon Braket library. An example is
shown in Code 3.1.

#Required packages

! p ip i n s t a l l amazon−braket −sdk

! p ip i n s t a l l boto3

! p ip i n s t a l l −−upgrade amazon−braket −sdk

! p ip i n s t a l l −−upgrade amazon−braket −schemas

from boto3 impor t Session

from braket . aws impor t AwsDevice , AwsSession

from braket . c i r c u i t s impor t C i r c u i t

from braket . s imu la to r impor t BraketS imula tor
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# Simula tor

from braket . devices impor t Loca lS imula tor

# Use the awsAccount name and reg ion

session=Session (

aws access key id= ’ ID awsAccount ’ ,

aws secret access key= ’ access key awsAccount ’ ,

region name= ’ us−east −1 ’ )

# Es tab l i sh a Braket session wi th Boto3

aws sessionQPU = AwsSession ( boto sess ion

=session )

# Any QPU device w i th the p rev ious l y

# i n i t i a t e d AwsSession should be i n s t a n t i a t e d .

dev ice arn =

’ arn : aws : braket : us−east − 1 : : device / qpu / ionq /

Ar ia −1 ’

device = AwsDevice ( device arn ,

aws session=aws sessionQPU )

On the other hand, with MATLAB, it is
necessary to declare different variables for correct
functionality, as shown in Code 3.1 where the
device variable represents the chosen quantum
device, while the taskExample variable refers to the
quantum task design (quantum circuit). For better
clarity on the connection in MATLAB, the following
steps are provided below:

1. Commence by obtaining and installing the
‘quantum’ library. It is important to note that
this library is compatible with MATLAB versions
commencing from 2023a.

2. To facilitate daily task execution, create an AWS
account of the IAM type. This process entails:

(a) Authorizing another user and setting up an
“access key” from the Summary section.

(b) Giving the authorization for using Amazon
Braket services.

(c) Handling permissions for the cloud-based
storage solution (bucket S3).

3. Document the login credentials in a text file
with the format “filename.env”. With the
next structure:

(a) AWS_ACCESS_KEY_ID=

**ACCESS IDENTIFIER GENERATED**

(b) AWS_SECRET_ACCESSS_KEY=

**PROVIDED ACCESS KEY**

Table 7. The best element obtained only in f4 and
f6 with 3 runs of 10 generations in Aria-1 the others
functions are marked with ’-’ and 40 runs with 15
generations in the Local simulator on Python

Function

fn

AWS Device

Python

Local

Simulator

Python

f1 - 7.9153

f2 - 68.4705

f3 - 1,856.0263

f4 39.2008 39.2819

f5 - 22.4994

f6 0.9998 0.9901

(c) AWS_DEFAULT_REGION=

**REGION OF THE QUANTUM DEVICE**

4. Start with the loadenv command to load the
contents specified by the “filename.env”.

5. Generate an instance of “Bucket” labeled so that
it commences with amazon-braket-

6. Inside this instance (bucket), create a repository
to keep the outcomes of the computations.

7. Extract “Copy S3 URI” located in the repository
generated in the bucket. This will be
our “bucketStoragePath”.

8. Ensure that the region configured for the bucket
and the quantum hardware are identical.

9. Look into the available AWS quantum devices
and simulators.

10. Choose one quantum device and obtain it
“Device ARN”. This value should be written in
Code 3.1 to the variable “deviceARN”.

11. Implement the Code 3.1 to initiate the
connection to MATLAB.

One essential component for storing the
outcomes and requirements of our operations is
the “Amazon S3 bucket” (Amazon Simple Storage
Service). This service facilitates the storage of data
as objects in a bucket, with a maximum storage
capacity of 5 TB. It allows for the storage of various
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Table 8. The mean, standard deviation, and median
of the better elements obtained on 40 runs with
15 generations on the Local simulator on MATLAB
and Python

fn Local Simulator MATLAB Local Simulator Python

Mean SD Median Mean SD Median

f1 7.9099 0.0259 7.9167 7.6636 0.7396 7.8710

f2 68.4592 0.1499 68.5000 66.9243 2.1947 67.6314

f3 1867.5001 3.8520 1868.9434 1486.0648 277.0820 1537.3369

f4 39.1616 0.4689 39.2826 38.3043 1.7572 39.1145

f5 22.4999 0.0001 22.5 21.6097 4.9062 22.3917

f6 0.9998 0.0002 0.9999 0.5754 0.3784 0.6355

file types, including videos, text files, and Braket
task results.

In contrast, Python does not require manual
configuration for generating necessary instances
for storage; it automatically does so using the
SageMaker tool. Therefore, the use of these tools
should be periodically monitored.

The quantum task process is maintained in the
same way in both languages because it is carried
out internally by AWS. A task, which can be a
quantum circuit or a quantum register, is defined
and sent to the device for execution. In certain
instances, the task is placed in a queue and held
until the quantum device or simulator is prepared
to receive it.

Following the submission of jobs to a quantum
device, third-party companies with quantum
computers process the tasks. Upon completion in
MATLAB, the results are securely streamed to an
“S3 bucket”. Effective monitoring and management
of all tasks can be performed on the “Quantum
Tasks” page through the “Amazon Braket console”.

3.2 Cost Analysis

Amazon Braket is currently an excellent option
for diving into quantum computing, especially
for countries with limited accessibility to different
quantum hardware. However, it is important to
consider the available budget to make the most
of this tool. It is crucial to know the concept of a
quantum algorithm for this reason.

In Section 2.2, it is explained that a quantum
algorithm is a set of quantum gates that perform
a specific task. However, we are in the NISQ
era, where noise affects the consistency of results.

This noise makes a single execution insufficient to
guarantee accuracy due to the probabilistic nature
of quantum outcomes.

Therefore, multiple measurements are required
to statistically reduce the effect of variability caused
by noise. In Amazon Braket, it is possible to
configure the number of shots per quantum task
according to specific needs, depending on the
selected device. For example, with Aria-1, it
recommends 2,500 shots.

In Table 3, we present the cost of each
shot per quantum device and quantum tasks.
It is crucial to emphasize that these devices
are from multiple companies and utilize distinct
technologies. Although our project did not focus on
a specific technology, the type of technology used
may be relevant for other types of problems. For
instance, in our case, only the number of qubits
available was relevant for a better representation
of decimal numbers.

In our QGA process described in
Subsection 2.3, we can observe two quantum
tasks. The first task involves obtaining an initial
quantum population using the Hadamard gate
Eq. 7, while the second task involves executing
mutation and crossover applied through by the
quantum gate Ry(θ) Eq. 12, where θ is set using
Table 1.

The final cost of each experiment is presented
in Table 4. As detailed in the implementation
section, each execution requires at least two
other AWS tools, which incur additional costs for
execution time, storage, and instance creation.
Moreover, the cost varies based on the city chosen
for tool execution.

Table 4 shows the costs derived from two
experiments that consist of optimizing six different
functions using MATLAB and Python. The
executions in MATLAB had 100 shots, while the
experiment with Python had 1,000. This number
of shots was used to stay within the project
budget. If the AWS recommendation of using 2,500
shots for more reliable measurements had been
followed, the total cost for both experiments would
have been USD$84,110.1, in contrast to the USD
$5,014 spent. The costs associated with AWS
encourage the search for different options to work
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with quantum devices. One possible proposal is
the purchase of a quantum device.

For example, purchasing a device “Gemini
Mini”3 with a price of around $5,000, which is
equipped with 2 qubits and based on the theory of
nuclear magnetic resonance (NMR) [24]. However,
this option is limited compared to Amazon Braket
due to the restricted number of available qubits and
the reliance on a single technology.

Therefore, the choice of quantum hardware
will depend on the research objectives and
the available budget. In this sense, Amazon
Braket offers a wider range of quantum
technology options.

4 Experiments and Results

This section presents the experiments and results
implementing the QGA on a single-variable
optimization problem using two platforms available
to connect with quantum devices on AWS. The first
platform utilizes the ‘quantum’ library for MATLAB,
and the second uses the Python programming
language through “Amazon Braket”. Finally, results
from local simulators enabled on both platforms
are compared. The QGA is assessed on different
test functions with different levels of complexity
to evaluate the strengths and weaknesses of the
QGA. Table 5 presents the selected test functions
with their respective global maximum to be found.

The goal is to determine if there is a difference
in performance, specifically regarding the time
required, and to ascertain if there is a variance in
the results obtained from the function optimization
problem. The assumption is that since we
employ the same algorithm for both platforms, any
deficiency should be evident in both sets of results.

The objective of QGA is to determine the
value of x that maximizes the functions shown in
Table 5. Individuals were initially encoded in binary
format and then converted to decimal values, as
described in subsection 3.1. Two experiments
were conducted. The first experiment aimed to
define and observe the requirements and behavior
of the connection with the MATLAB platform, and

3spinquanta.com/products-solutions/gemini

the second with Python. In both experiments, the
precision of the QGA was examined.

4.1 Experiment 1: MATLAB Implementation

The experiment for the MATLAB implementation
involved running fifteen generations per test, with
100 shots for each quantum circuit. The Harmony

device with 11 qubits was used for the first three
test functions, and the Amazon SV1 simulator was
used for the last three test functions.

These adjustments were made to stay within
the project budget, and due to the variability of
costs in available quantum devices shown in Table
3, the number of runs in this test was 10. For
comparison with the local simulator, 40 executions
with 15 generations were carried out.

From this experiment, an average of all the
best results obtained was calculated, as well
as their standard deviation, as shown in Table
8 in comparison subsection 4.3 between local
simulators. In the case of the MATLAB experiment
with a quantum device, only the final solution of
the 10 runs was obtained. Table 6 displays the
final results.

The first column presents the best tuple
(x, f(x)) obtained using the Harmony quantum
device, and the second column shows the
best result obtained with the quantum simulator.
The value close to the maximum is in bold.
It is important to note that both used the
‘quantum’ package.

In table 6, a relevant feature is presented
regarding the approximation of the value of x.
Quantization, which depends on the number
of available qubits, is used to enhance the
approximation when converting bits to decimal
numbers. With 11 qubits, it is evident that the
decimal values of x differ from the value indicated
in Table 5. Nevertheless, in this experiment, this
variance did not have a significant impact on the
QGA objective.

Table 6 shows the MATLAB approximations
performed on the Harmony device and Local
Simulator. The executions on the Local Simulator
were on an Intel Core i7-9750 Processor (2.6 GHz)
with 16 GB of RAM running Windows 11 Home with
MATLAB 2023.
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Fig. 5. Differences between the best elements found and the maximum of all functions

Regarding the behavior of the Quantum Genetic
Algorithm (QGA) on MATLAB, the results depicted
in Figures 2, 3, and 4 illustrate that the QGA
requires a few generations to reach optimal or
near-optimal values.

They also have an average that describes
how the function values near the optimum or
even the optimum value have been found since
early generations. This is a promising outcome,
especially compared to simulation results from
previous studies such as [2], [13] and [17] which
predict favorable results.

4.2 Experiment 2: Python Implementation

In the second experiment, we ran ten generations
per test for the Python implementation of the QGA,

using 1,000 shots on f4 and f6 with the Aria-1

device, which contains 25 qubits. These limitations
were set to stay within the budget. The number of
executions was limited to three.

For the local simulator with the same
characteristics mentioned in the previous
experiment, we had 40 algorithm executions
(runs). A comparison of the simulator run and the
data obtained from the Aria-1 quantum device run
is shown in Table 7.

In Table 7, we can see that the results on the
quantum device are near the maximum, while the
local simulator also shows greater accuracy in the
other functions. The closest values are highlighted
in bold.
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Fig. 6. Distribution of maximum findings for functions f1 - f3. Figures top MATLAB, bottom Python

4.3 Comparison of Local Simulator

Finally, we compare the two simulations made
with the QGA versions. One simulation used
the MATLAB ‘quantum’ package and the other
used Amazon Braket in Python with our computing
resources (Intel Core i7-9750 Processor (2.6 GHz)
with 16 GB of RAM running Windows 11 Home
with MATLAB 2023 and Python 3.11) to simulate
quantum processing. Table 8 shows the mean,
standard deviation, and median.

The MATLAB data shows a lower standard
deviation compared to Python, as well as a good
mean approximation toward the target. In Table 8,
it is possible to observe that the median results
closest to the maximum for Python are with f1
and f6, which also have a lower deviation. In
the case of MATLAB, f1, f2, f4, f5, and f6 test

functions show good performance, data that are
shown in bold.

In Figure 5, the difference between the
maximum value to be obtained, and the values
generated by QGA on both platforms is shown
where each function exhibits different behaviors.
Additionally, the behavior with both libraries shows
significant differences, which are consistent with
Table 8. A high dispersion is observed for the case
of Python (marked with a star).

The observed wiggly points are due to the
random nature of the algorithm in every run,
where each execution begins with a new quantum
population that evolves after each generation (15).
With MATLAB, the jumps are more noticeable as
it approaches the last generation of each run,
containing better elements and resulting in almost
zero difference.
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Fig. 7. Distribution of maximum findings for functions f4 - f6. Figures top MATLAB, bottom Python

In contrast, with Python, only some runs show
improvement after each generation. For example,
for test functions f1, f4, and f5, a behavior similar
to that of MATLAB can be seen, but not for the
other functions.

The distribution of the total of the best
individuals obtained from the local simulator
executions is shown in Figure 6 and Figure 7.
Results obtained with Python are represented in
green, while those obtained with MATLAB are in
blue, with a dotted line indicating the maximum
required value.

Both Figures (6 and 7) demonstrate the
precision of MATLAB. Although Python and
MATLAB both show that the highest percentage
of the values obtained are close to the maximum
required, it is evident that Python produces results

that are further away from the maximum required
value compared to MATLAB.

On the other hand, Table 9 shows the execution
times with MATLAB using Harmony and with
Python using Aria-1, as well as the times with
the local simulator, available on both platforms.
Additionally, Table 9 shows the particular time to
generate the quantum population and the quantum
mutation (quantum tasks), data obtained from
the record that AWS makes on the Amazon
Braket console.

Additionally, it is possible to observe a
significant difference in the time described in
Table 9. The average time results shown in Table 9
were obtained from approximately 583 quantum
tasks with 100 shots in MATLAB. For Python
results, approximately 534 tasks with 1,000 shots.
It is imperative to provide additional information
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Table 9. Mean, standard deviation, and total time of the QGA execution with MATLAB and Python on a quantum device
(3 and 10 runs with 15 and 10 generations respectively), and on a local simulator (40 runs with 15 generations each)

MATLAB - Harmony MATLAB - Local Simulator

Mean (s) SD Total Time(s) Mean (s) SD Total Time(s)

Quantum

population

1,320 0.0206 - - - -

Quantum

mutation

2,100 0.0563 - - - -

Total mean 2,040 0.0545 - 18.4259 9.5568 -

- - - 1,354.8 - - 110.5556

Python - Aria-1 Python - Local Simulator

Quantum

population

36.5996 23.5761 - - - -

Quantum

mutation

36.5996 23.5761 - - - -

Total mean 73.1993 47.1523 - 37.5076 0.0079 -

- - - 512.3955 - - 225.0478

on operating hours to access specified quantum
devices, such as Harmony and Aria-1.

These devices are available Monday
through Friday from 12:00:00 to 03:00:00 UTC
(Coordinated Universal Time). The above detail
is significant since it introduces an additional
waiting time to the total duration of the execution, a
factor that is not considered in the current analysis
because this time is independent of the chosen
platform/programming language.

Likewise, AWS offers accessibility mechanisms
such as Braket Direct, which facilitates time-bound
requests for the use of specific quantum devices,
and Hybrid Jobs, which encompasses hybrid
quantum tasks.

The results shown in Figures 5, 6, and 7 depict
the precision of the QGA in each test function. In
that sense, statistics on the differences from the
established maximum were obtained. A noticeable
difference can be observed in test function f3 due
to its multimodal behavior.

However, in general, we can see that for the
rest of the test functions, the range of differences is
much closer to the global maximum. The behavior
of the QGA for the optimization of single-variable

multimodal functions shows results consistent with
previous studies, such as those by [13, 17, 18].

These studies conducted on simulators predict
a good performance of the QGA. One of the
significant advantages is the reduced number
of generations or individuals required to find
the maximum, resulting in substantial time and
computational resource savings.

This performance is observed even in devices
that, to date, contain a limited number of qubits.
Two notable aspects of this work are time and cost,
as access to a quantum device depends on the
stable connection with AWS and the connection
between AWS and the company owning the
quantum computer.

Additionally, the queue of jobs waiting for
each device and their established response times
are crucial factors. These factors are important
to consider when working with AWS, as the
availability of various devices may be affected.

For example, when attempting to execute a task
on certain devices, such as Aquila, the device
may be suspended by the company, resulting in
execution errors. Additionally, internet availability
is another crucial factor to consider.
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5 Conclusion and Future Work

This study demonstrated the feasibility of
implementing Quantum Genetic Algorithms (QGA)
implemented via Amazon Braket on MATLAB and
Python platforms. Moreover, it highlited relevant
details, such as the dependence on the stability of
the connection with AWS and the response times
of the quantum computers’ owner companies for
accessing quantum devices.

The queue of jobs and internet availability
also play crucial roles. These factors must be
considered when working with AWS, as device
availability may vary. For instance, certain devices
might be suspended by their companies, leading to
execution errors.

On the other hand, the QGA performance
in optimizing single-variable multimodal functions
is consistent with previous studies conducted on
simulators. The QGA requires fewer generations
or individuals to find the maximum, thus saving
time and computational resources. This efficiency
is maintained even on devices with a limited
number of qubits. Quantum metaheuristics
represent a promising advancement over classical
metaheuristics, particularly for tackling complex
high-dimensional problems.

Classical metaheuristics have demonstrated
remarkable results, and the significant resources
required emphasize the necessity of further
exploration into quantum approaches. These
approaches leverage fundamental quantum
physics features such as superposition
and entanglement, potentially leading to
exponential improvements in execution time
and resource efficiency.

Despite the challenges posed by the NISQ
era, including quantum errors, noise, limited qubit
availability, and hardware variability, this study
provides a practical initial application of quantum
devices, yielding the expected results.

Furthermore, the use of simulations
accentuates the utility of widely adopted
programming languages, such as Python and
MATLAB, making quantum computing more
accessible to the scientific community. This
accessibility is crucial for advancing research and
development in this rapidly evolving field.

Future work should explore multimodal
optimization problems using different technologies
to determine if certain technologies are more
suitable for specific problems. This approach
will help assess the comparative performance of
various technologies.

For initial forays into quantum computing
or when analyzing various quantum algorithms
without a budget or clear time frame, cloud-based
tools such as Qiskit and Pennylane are
recommended.

Errors on the AWS platform can be costly in
terms of money and time. AWS is best suited for
developing well-established problems where exact
execution costs can be calculated or when a large
budget is available.

In conclusion, while the current state of
quantum hardware presents several challenges,
the continued development and expansion of
quantum devices on platforms like Amazon
Braket promise to enhance quantum computing
capabilities.

Future research should focus on improving
QGAs and exploring their applications across
different technologies to address complex
optimization problems more effectively.
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