
Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.11, Núm. 19. Año 2024 

 

287 

 

Path Planning Acceleration with GPU for an Omnidirectional 

Mobile Robot 
 

Alejandro Dumas León, Eduardo Arturo Mendoza Gómez, Jorge Tomás Araujo González, Ulises Orozco-Rosas*, Kenia Picos 

 
CETYS Universidad, Av. CETYS Universidad No. 4. El Lago, C.P. 22210, Tijuana B.C., México 
[alejandrodl, arturo.mendoza, jorget.araujo]@cetys.edu.mx, [ulises.orozco, kenia.picos]@cetys.mx 

 

Abstract 

Path planning in a state space using the iterative deepening method is a complex problem that can be accelerated using a GPU. In 

this approach, the state space is divided into smaller subspaces and iterative depth search is applied to each of these. The parallel 

capabilities of the GPU are utilized to process several subspaces concurrently. Furthermore, the shared memory in the GPU can be 

leveraged to store relevant data and reduce access time to the global memory. Implementing this approach on the GPU can provide 

significant acceleration compared to CPU execution. However, careful optimization and parameter tuning are required to utilize the 

GPU’s capacity fully. In addition to a detailed description of the proposed methodology, experimental results are presented that 

demonstrate the superiority of our approach compared to traditional CPU-based methods. These results highlight the potential of 

GPUs to transform trajectory planning in mobile robots, offering a route to faster and more efficient solutions. Trajectory planning 

in state spaces represents a significant challenge in mobile robotics, particularly in applications that demand fast and efficient 

responses in dynamic and complex environments. This work introduces a novel method to accelerate route planning in an 

omnidirectional mobile robot fusing advances in hardware with sophisticated algorithmic techniques, a new paradigm is established 

in path planning for omnidirectional mobile robots, marking an important milestone in the search for more agile and capable robotic 

systems.  
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Resumen 

La planeación de ruta en un espacio de estados utilizando el algoritmo de profundidad iterativa es un problema complejo que puede 

ser acelerado con el uso de una GPU. En este acercamiento, el espacio de estados es dividido en subespacios más pequeños y se 

aplica la búsqueda en cada uno a través del algoritmo de profundidad iterativa. Las capacidades del procesamiento paralelo de la 

GPU se utilizan para procesar una gran cantidad de subespacios concurrentemente. Además, la memoria compartida en la GPU 

puede ser utilizada para almacenar datos de gran utilidad y reducir el tiempo de acceso a la memoria global. Implementar este 

algoritmo en la GPU puede acelerar significativamente la ejecución del programa en comparación con la CPU. Donde requiere 

una configuración rigurosa de los parámetros para optimizar y aprovechar al máximo las capacidades de la GPU. Los resultados 

experimentales demuestran la superioridad de nuestro enfoque en comparación con los métodos tradicionales basados en CPU. 

Estos resultados resaltan el potencial de las GPU para transformar la planificación de trayectoria en robots móviles, ofreciendo 

una ruta hacia soluciones más rápidas y eficientes. La planificación de trayectoria en espacios de estados representa un desafío 

importante en la robótica móvil, particularmente en aplicaciones que exigen respuestas rápidas y eficientes en entornos dinámicos 

y complejos.  

Palabras Clave— Algoritmo de Profundidad Iterativa, Cómputo Paralelo, Espacio de Estados, Planeación de Ruta, Robots Móviles. 

 

1. INTRODUCTION 

Pursuing faster and more efficient algorithms is a 

constant quest in the ever-evolving landscape of 

computational science and problem-solving. Among the 

many challenges researchers and engineers face, path 

planning within a complex state space is a formidable puzzle. 

This intricate problem, with its numerous dimensions and 

intricate calculations, has long demanded innovative 

approaches to achieve practical solutions. One such approach, 

at the forefront of contemporary computational strategies, 

seeks to harness the immense computational power of 

Graphics Processing Units (GPUs). 

This groundbreaking technique addresses the computational 

complexity of path planning and offers the tantalizing 

prospect of unlocking unprecedented speeds and efficiencies. 

The core principle revolves around dividing the intricate state 

space into more manageable subspaces. An interactive depth 

search is applied with meticulous precision within each of 

these subspaces. 

What sets this approach apart is the remarkable parallel 

processing prowess inherent to GPUs. Unlike traditional 

Central Processing Units (CPUs), GPUs consist of numerous 

cores that considerably increase the number of tasks that can 

be performed concurrently. This inherent parallelism allows 
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concurrently handling multiple subspaces, fundamentally 

transforming the path-planning process. 

Furthermore, using shared memory within the GPU is a 

crucial catalyst in this computational alchemy. By storing 

essential data within this shared memory, access times to the 

global memory are dramatically reduced, optimizing the 

computational workflow. The cumulative effect of these 

innovations results in a seismic shift in path planning speed, 

offering a quantum leap beyond what traditional CPU-based 

executions can achieve. 

Nevertheless, as with any transformative technology, the full 

realization of GPU-accelerated path planning demands 

meticulous optimization and parameter tuning. The 

harnessing of the GPU’s vast computational potential is a 

nuanced art that requires finesse and expertise. Researchers 

and practitioners alike must navigate the intricate terrain of 

algorithmic optimization and hardware utilization to unlock 

the GPU’s unparalleled capacity fully. 

In this realm of computational innovation, the fusion of state 

space, iterative deepening approach, and GPU acceleration 

represent a powerful trifecta that has the potential to redefine 

the boundaries of what is computationally achievable. It is a 

testament to the relentless pursuit of efficiency and the 

ceaseless exploration of novel approaches to complex 

problems. As we delve deeper into the intricacies of this 

groundbreaking technique, we embark on a journey into the 

heart of computational discovery, where the boundaries of 

what is possible continue to expand, setting new standards in 

path planning and beyond. 

The task is to perform pathfinding in a state space, initially 

sequentially and ultimately in parallel, using the GPU. 

Therefore, path planning in state space using the iterative 

deepening approach on a GPU (specifically the CUDA 

programming language) can provide a faster and more 

efficient solution for this complex problem. This could be 

highly beneficial in robotics and autonomous systems 

applications such as route planning [3,4]. Using the iterative 

depth method, the main objective of this work is to employ 

parallel computing with the GPU in an omnidirectional 

mobile robot to perform path planning in state space. 

The article’s structure follows: Section 2 starts with a 

theoretical background. Section 3 presents the proposal for 

this work, which describes the software, hardware, and 

mechanical implementation. The results will be presented in 

Section 4, where a comparison between sequential and 

concurrent execution shows the best path in a minimum time. 

Finally, Section 5 presents a conclusion of this proposal. 

 

2. THEORETICAL FRAMEWORK 

This section comes into the theoretical foundations that 

underpin the study, concentrating on a spectrum of concepts 

crucial for a comprehensive understanding of the research 

approach. Central to this exploration is “Path Planning,” a key 

element in disciplines like robotics and computer science, 

which involves identifying an optimal route or strategy [10]. 

The “Iterative Deepening Approach” is also examined, an 

algorithmic technique that skillfully balances depth and 

breadth in search processes, particularly pertinent in 

environments with vast state spaces. The notion of “State 

Spaces,” embodying all conceivable configurations or 

conditions in a given problem, is fundamental to this 

discourse, providing a structure for algorithmic problem-

solving.  

Additionally, the increasing importance of “Parallel 

Programming” in enhancing computational efficiency is 

acknowledged as a vital facet of contemporary computing 

paradigms. Within this context, “CUDA,” NVIDIA’s parallel 

computing platform and programming model, is highlighted 

for its transformative impact on handling computing tasks, 

especially in high-performance computing scenarios. This 

section aims to provide a thorough background, laying the 

groundwork for the subsequent application and examination 

of these concepts within the specific research field. 

Trajectory planning: is a fundamental concept in robotics and 

control systems, focusing on determining the optimal path a 

robot should follow over time. It involves not only the 

selection of a path from one point to another but also the 

consideration of how an entity moves along this path, 

factoring in its speed, acceleration, and other dynamic aspects 

[7]. The main objective of trajectory planning is to develop a 

sequence of movements or a trajectory that allows the robot 

to perform its task efficiently and in compliance with its 

physical and operational constraints [5]. 

As Steven LaValle’s book “Planning Algorithms” detailed, 

trajectory planning primarily involves solving two 

interrelated problems. First, it requires the determination of a 

path that the robot can follow, avoiding obstacles and 

ensuring feasibility within its operational environment. This 

path is often calculated in a state space, denoted as 𝑋, where 

each state 𝑥 comprises the robot’s configuration (𝑞) and its 

velocity (𝑞′). The second aspect of trajectory planning 

involves figuring out the appropriate velocities and 

accelerations (𝑞′) at each point along the path, ensuring that 

these movements respect the robot’s mechanical limitations 

and differential constraints. 

Iterative Deepening Approach: A tree search algorithm that 

explores different depths to find an optimal or satisfactory 

solution. Starting from a root node, successor nodes are 

recursively explored. Iterative depth involves conducting a 

depth search iteratively, starting with a given maximum depth 

and gradually increasing this maximum in each iteration until 

the desired solution is found. This efficient and memory-

conservative method makes it suitable for large search spaces. 

The idea is to use a depth-first search and find all states that 

are distance i or less from x1. If the goal is not found, the 

previous work is discarded, and depth-first is applied to find 

all states of distance i +1 or less from x1[1]. 

State Space: It encompasses all conceivable scenarios within 

a given context. This could range from the position and 

orientation of a robot, the locations of tiles in a puzzle, to the 

position and velocity of a helicopter. LaValle emphasizes the 

versatility of state spaces, acknowledging that they can be 
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either discrete—finite or countably infinite—or continuous, 

which means uncountably infinite. 

A critical aspect highlighted by LaValle is the implicit 

representation of the state space in most planning algorithms. 

Due to the vast number of states or their combinatorial 

complexity, it is impractical to explicitly represent the entire 

state space in most applications. Nevertheless, defining the 

state space remains a crucial step in formulating planning 

problems and designing and analyzing algorithms to solve 

them. 

LaValle advises careful definition of the state space in 

specific applications, ensuring that irrelevant information is 

not encoded into a state, thereby maintaining the efficiency 

and relevance of the planning algorithm. This thoughtful 

approach to defining state spaces underscores their 

importance in the development and application of planning 

algorithms. 

Parallel Programming: This involves designing computer 

programs and algorithms for concurrent execution on 

multiple processors or cores, enhancing speed and efficiency. 

Traditional sequential programming executes instructions one 

after the other, limiting performance in data-intensive or 

computationally heavy tasks. Parallel programming leverages 

multiple processing units concurrently to expedite task 

execution [2]. 

One of the fundamental concepts in parallel programming is 

task decomposition. It involves breaking down a larger 

computational task into smaller, more manageable subtasks 

that can be executed concurrently. The key challenge here is 

to ensure that these sub-tasks can run independently and 

efficiently without causing conflicts or bottlenecks. Effective 

task decomposition is essential for harnessing the full 

potential of parallelism [11]. 

Parallel programming encompasses various forms of 

parallelism, each suited to several types of problems. Task-

level parallelism divides a program into smaller units of work 

that can run in parallel. Data-level parallelism involves 

distributing data across multiple processing units and 

performing identical operations on different data elements 

simultaneously. Instruction-level parallelism exploits 

parallelism within a single instruction stream, often seen in 

modern processors with pipelining or superscalar execution 

capabilities [12]. 

Parallel programming models can be categorized into two 

main types: shared memory and distributed memory. 

Shared memory parallelism involves multiple threads or 

processes sharing a common memory space, allowing them to 

communicate by reading and writing to shared data structures 

[9]. In contrast, distributed memory parallelism relies on 

message passing, where processes or nodes communicate 

through explicit messages, each having its private memory 

space. Distributed memory models are commonly used in 

high-performance computing (HPC) environments with 

frameworks like MPI. In parallel programming, 

synchronization mechanisms are crucial to coordinate the 

execution of concurrent tasks. These mechanisms ensure that 

tasks do not interfere with each other or access shared 

resources simultaneously, which could lead to data corruption 

or race conditions. Common synchronization primitives 

include locks, semaphores, barriers, and atomic operations, 

helping to maintain the order and integrity of parallel 

execution. 

Efficient parallel programs require load balancing to 

distribute the workload evenly among available processors or 

cores. Load imbalances can lead to situations where some 

processors are idle while others are overwhelmed, resulting in 

suboptimal performance. Achieving good scalability, where 

the program’s performance scales with the number of 

available processing units, is a significant challenge in 

parallel programming and often requires careful design and 

optimization [6]. 

CUDA: NVIDIA’s parallel computing platform, allowing 

general-purpose computing on graphics processing units 

(GPUs). Modern GPUs are highly parallel architectures 

capable of executing multiple computational tasks 

simultaneously, unlike traditional GPUs designed solely for 

graphics rendering. 

 

3. PROPOSAL 

Figure 1 delineates the sequential stages involved in 

CUDA-based computation, starting from the allocation of 

memory on the host (CPU) and the device (GPU), through to 

the transfer of data between host and device. 

 

 

Figure 1. Main program diagram. 

 

Figure 2 details the execution of parallel kernels on the GPU, 

displaying the distribution of tasks across multiple threads 

and blocks within the GPU’s architecture. Following the 

kernel execution, the diagram illustrates the process of 
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transferring the computed results back to the host.  

 

 

Figure 2. CUDA kernel diagram. 

 

Set Initial State, Goal State, and Obstacles. In Figure 3, the 

initial state marks the beginning point, defining the exact 

location and orientation from which the journey or operation 

will start. This state is pivotal as it serves as the cornerstone 

for all subsequent path calculations. Following this, the goal 

state is established, delineating the intended destination or 

endpoint. This goal is crucial as it guides the trajectory and 

final aim of the path-planning algorithm. Lastly, identifying 

obstacles forms an integral part of the process. These 

obstacles, which may vary in nature and dynamics, create 

constraints within which the path planning must efficiently 

navigate. By accurately setting these elements, the system is 

equipped to utilize parallel computing techniques, enabling it 

to concurrently explore multiple pathways and scenarios, 

significantly enhancing the efficiency and effectiveness of the 

path-planning solution. 

Creation of State Space. The creation of state space is a 

fundamental step that involves defining all possible states that 

the system or agent can occupy within its environment. 

Neighbor Calculation on Each State. This involves 

analyzing the connectivity and accessibility between states 

based on the system’s movement rules and environmental 

constraints. For each state, the algorithm computes a set of 

neighboring states, which are the potential next steps the 

entity can take. This calculation considers several factors such 

as distance, direction, possible obstacles, and specific 

movement capabilities of the entity [8]. 

Concurrently choose the best neighbor for each state. This 

method involves evaluating all adjacent states or neighbors 

for each state in the system simultaneously, rather than 

sequentially. By leveraging parallel processing, the algorithm 

can assess multiple paths and options at once, significantly 

speeding up the decision-making process. 

 

 

Figure 3. System block diagram. 

 

Append visited neighbors in a path vector. As the 

algorithm progresses, each neighbor that is visited or deemed 

a viable step towards the goal is added to the path vector. This 

vector acts as a dynamic record, documenting the sequence of 

states traversed by the entity. By maintaining this record, the 

algorithm not only keeps track of its current position 

concerning the start and goal points but also avoids revisiting 

the same state, thereby preventing redundant calculations and 

potential loops. 

Return a final path array. This final path array is a 

structured collection of states or steps, sequentially arranged 

to guide the entity through the most efficient, safe, or 

otherwise specified route. It represents the algorithm’s 

solution to the navigational challenge, distilled from the 

complex exploration of state spaces and neighbor evaluations. 

Export path on a *.txt file. This process involves translating 

the final path array, which comprises a sequence of 

coordinates or steps, into a text format that is easily readable 

and accessible in Python. 

Import *.txt file into python program. This step implies 

importing the final path into the Python program to tell the 

mobile robot the path to follow. 

Set hardware peripherals. Configuring and initializing 

external devices – motors and communication modules – that 

the main processor or microcontroller will interact with. Each 

peripheral must be correctly connected, and its 

communication protocols firmly established, ensuring 

seamless data exchange and control. 

Execute the program with the final path. The mobile robot 

performs the best-established path from the initial state to the 

final state avoiding obstacles. 

Figure 4 presents a layered arrangement of various robotic 

components, each distinct in its function and appearance. On 



Número Especial de la Revista Aristas: Investigación Básica y Aplicada. ISSN 2007-9478, Vol.11, Núm. 19. Año 2024 

 

291 

 

the top, there is a Jetson Nano, notable for its compact black 

casing, serving as the brain of the setup with its powerful 

computing capabilities. In the middle layer, we find an array 

of components: a Stepper Motors Driver, easily identifiable 

by its purple color, which plays a crucial role in controlling 

the precision of motor movements; alongside there are 

Antennas, represented as black cylinders, crucial for wireless 

communication; and a Robot Handler, comprising white 

semi-ellipses, which is likely involved in manipulating or 

interfacing with other parts of the robot.  

 

 

Figure 4. 3D Render view. 

 

On the bottom, the setup is completed with Mecanum wheels, 

known for their unique ability to move in any direction, which 

adds a versatile range of motion to the robotic assembly. This 

layered configuration illustrates a sophisticated blend of 

electronic and mechanical engineering, each component 

working in harmony to create a versatile and functional 

robotic system. 

 

4.  RESULTS 

The implemented algorithm is iterative depth, which 

was achieved using object-oriented programming where two 

classes were created: a graph class with attributes including 

value, neighbors, and end flag, and a node class with 

attributes such as start, end, grid, depth, cost, path, prohibited 

states, and stack. The program operates through the value of 

an initial node that calls the neighbor calculation function, 

where the neighbors are calculated. It is ignored if any of the 

neighbors is prohibited; otherwise, all other neighbors are 

added to the stack. The next node is the stack's last element, 

and the current node's neighbors are recalculated recursively 

until the current node becomes the goal state. If a node has no 

neighbors and is not the goal state, it is removed from the 

stack and marked as visited. 

Regarding the hardware, a development graphics card was 

implemented, capable of carrying out parallel processing in 

its future version. The unit can process and execute the actions 

required to move from an initial state to its goal state. On the 

software side, the unit executes the algorithm in C++, while 

the hardware runs in Python for its simplicity, using libraries 

like time and GPIO to facilitate pulse control. A bash file 

executes all the necessary files to carry out the algorithm and 

enable the robot to execute its trajectory. 

Path planning results. Figure 5 shows the resulting path 

(yellow crosses) beginning from the initial state: (3,3) and 

final state: (7,7). Black crosses represent all the visited states 

across the 10×10 grid. Obstacle coordinates are (4,4), (5,4), 

(6,4), (4,5), (5,5). 

 

 
Figure 5. Resulting path with 10x10 grid size. 

 

Figure 6 shows the resulting path beginning from the initial 

state: (4,4) and final state: (14,14). Black crosses represent all 

the visited states across the 20×20 grid. Obstacle coordinates 

are (8,8), (9,8), (10,8), (11,8), (12,8), (8,9), (9,9), (10,9), 

(11,9), (12,9), (8,10), (9,10), (10,10), (11,10), (12,10). 

 

 
Figure 6. Resulting path with 20x20 grid size. 

 

Performance results. Figure 7 shows a graphical 

representation of the execution time, measured in seconds, for 

computing paths in parallel computing vs sequential 
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computing. The graph specifically illustrates how this 

execution time varies concerning the size of the 

computational grid. This visual depiction allows for an easy 

comparison of performance across different grid sizes, 

highlighting the efficiency and scalability of the parallel 

computing approach in path calculation tasks. 

 
Figure 7. Execution Time vs. Grid Size. 

 

5. CONCLUSIONS 

The work’s primary goal, which was to implement 

iterative depth for a mobile agent operating within a state 

space using CUDA C/C++, has been accomplished. The 

utilization of parallel programming on the CUDA-enabled 

device has enabled the efficient execution of the algorithm, 

although with some minor margins of error that have not 

hindered overall functionality. This work serves as a 

compelling demonstration of the feasibility of applying data 

parallelism techniques to control and robotics projects. The 

use of CUDA libraries has proven instrumental in achieving 

parallelism within the source code, displaying the potential 

for leveraging GPU computing to enhance the performance 

and capabilities of systems in the realm of control and 

robotics. This achievement highlights the promising future of 

parallel programming in pushing the boundaries of 

computational efficiency in various domains. 

Furthermore, this work underscores the growing importance 

of parallel programming and GPU acceleration in addressing 

complex computational challenges. With the continuous 

advancement of hardware technology, such as GPUs, the 

potential for leveraging parallelism to tackle intricate 

problems across various fields continues to expand. The 

successful application of CUDA C/C++ in this context not 

only demonstrates its versatility but also encourages further 

exploration of parallel computing solutions for even more 

ambitious projects in control, robotics, and beyond. As 

parallel programming techniques continue to evolve and 

mature, they hold the promise of unlocking new horizons in 

terms of computational power and efficiency, driving 

innovation and breakthroughs in numerous domains. 
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