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ABSTRACT This article presents a new methodology to diagnostics ten types of skin lesions based
on the image’ s Fourier spectral information in an additive color model. All spectral information and
correlation coefficients between the skin lesions classes conform the input signals to an Artificial Neural
Network. In general, the results show the well-defined classification for all the skin lesions classes based
on the high values for Accuracy, Precision, Sensitivity, and Specificity metrics performance and a reduced
images misclassification percentage (x5.9%) for the Testing sub-dataset, and less for Training (~2.8%)
and Validation (*5.6%) sub-dataset even considering the strange objects, not-clarity, and black sections in
some images analyzed. The general achieved classification Accuracy, Precision, Sensitivity, and Specificity
percentages of the proposed method are 99.33 %, 94.16 %, 92.9 %, and 99.63 %, respectively. In particular,
the skin lesions related to Basal Cell Carcinoma, Seborrhoeic Keratosis, and Melanocytic Nevus present the
best performance regarding the Receiver Operating Characteristics, while the Pyogenic Granuloma was the
worst classified.

INDEX TERMS Artificial neural networks, biomedical computing, image processing, medical diagnostic

imaging, Fourier spectral analysis.

I. INTRODUCTION
The skin is considered the largest organ in the human body,
and it can present diverse diseases. In particular, some skin
diseases can be very common, so they can present very similar
symptoms and characteristics, i.e., the skin lesions can be
apparently identical for different skin diseases, which can
increase the misdiagnoses. For example, skin cancer is a
disease caused by unrepaired Deoxyribonucleic acid (DNA)
damage that triggers skin mutations which the dermatological
evidence is the uncontrolled development of abnormal cells.
Also, it is one of the conditions with the highest growth
for populations with fair skin around the world in recent
years [1].

In general, the skin tumors are classified into malignant
melanomas and non-melanoma, and they rank according to
the cell in which they originated [2]. The most common
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non-melanomas are basal cell carcinoma and squamous
cell carcinoma. Regarding the malignant skin diseases,
Melanoma is the most dangerous skin cancer but less fre-
quently; if it is detected early, it can be curable, having a
death rate of 85% of all fatal skin cancer cases [2], [3]. In par-
ticular, the main features of the skin lesions for Melanoma
are asymmetrical shape, irregular edges, various shades of
pigmentation, and its diameter can be greater than 6 mm.
Concerning Basal cell carcinoma, which has slow growth and
occurs most frequently, can appear on the face and neck as
colored or pigmented bumps (e.g., blue, brown, or black),
its size varies and can be up to 10 mm in diameter [4], [5].
Another skin disease is Squamous cell carcinoma that is pre-
sented as papules, keratotic plaques, or ulcers. Later nodules
or ulcerated tumors can develop this carcinoma, which can
arise in actinic keratosis [6], [7]. Actinic keratosis manifests
as rough papules, patches, or plaques, its size is less than
10 mm, and its edges are irregular; they may itch and burn
frequently and appears on the soles of the feet, the palms of
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the hands, and the face [8]. Also, Intraepithelial carcinoma is
another of the malignant neoplasms that produce changes in
the cells of the epithelium.

As aforementioned above, there are benign skin tumors
among skin diseases such as dermatofibromas, pyo-
genic granulomas, hemangiomas, seborrhoeic keratosis,
and melanocytic nevus. In particular, Dermatofibromas are
papules and nodules well defined, usually asymptomatic;
their size varies from a few millimeters to more than 2 cm [9].
Pyogenic granuloma is a lesion characterized by a raised
nodule that can ulcerate, and presents a slow evolution [10].
Thus, all skin tumors both malign and benign present certain
features.

In the dermatology area, visual inspection is the first
stage for analyzing spots or skin lesions as part of the
complete diagnosis process. However, different skin diseases
can present very similar characteristics, such as anatomi-
cal distribution, color, and area, among others [11]-[13].
Therefore, it is important to detect skin diseases in the
early stages based on particular skin lesions features, espe-
cially when they present similar characteristics between dan-
gerous and non-malignant skin diseases. Thus, due to the
importance of the early detection of skin diseases, differ-
ent non-invasive methodologies have been developed for
their identification, such as radiography, magnetic resonance,
imaging, fluorescence, computed tomography, ultrasound,
among others.

Regarding computer techniques, the Artificial Neural
Networks (ANN) are digitized models that intent to repro-
duce the behavior of the human brain for diverse applica-
tions as recognizing patterns, classification of input data,
among others, based on many learning techniques and algo-
rithms [14]. In particular, the ANN has been used to analyze
biological cells, invasive and non-invasive medical processes
[15]-[18]. Concerning medical procedures related to the
skin, the ANN has been used to study the multi-layered
skin model, to analyze the skin in a hyperspectral mode,
and quantify the skin damage, among other essential appli-
cations [19]-[21]. An important aspect is ANN’s uses in
medical processes using a limited training dataset, which
represents a critical countermeasure related to the conven-
tional ANN uses [22], [23]. Also, as a beginning step toward
the ANN design is the definition of the optimal predictors
related to the input information analyzed (e.g., signals or
images), which can be in spatial, Fourier spectral, temporal
domains, or a mixed domain. If the predictors are not well-
defined, it is possible that the ANN does not detect patterns
and, therefore, cannot perform the correct recognition and
classification of the samples [24], [25].

According to the literature review, there are some pro-
posals for multi-class skin lesion classifications using an
ANN, signatures via spectral densities, fractional Fourier
transform, Hermite transform, statistical information and
Asymmetry, Border inconsistency, Color variety, and Diam-
eter metrics (i.e., ABCD metrics). However, most of them
consider a reduced class amount and do not consider the
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TABLE 1. Database information of skin lesions images.

Class Abbreviation Type Total (L)
1 ALLMEL Malignant Melanoma 76
2 AK Actinic Keratosis 45
3 ALLIEC Intraepithelial Carcinoma 78
4 ALLDF Dermatofibroma 65
5 ALLSCC Squamous Cell Carcinoma 88
6 PYO Pyogenic Granuloma 24
7 ALVASC Hemangioma 97
8 ALLBCC Basal Cell Carcinoma 239
9 ALLSK Seborrhoeic Keratosis 257
10 ALLML Melanocytic Nevus 331

spectral information on an additive color model as input to
an ANN [26]-[28].

In this work, discrimination from ten skin lesions is per-
formed by calculating the 26 parameters (predictors) related
to the Fourier spectral information of images on the RGB
additive color model using a Two-Layer neural network.
In particular, 16 parameters are associated with the 2-D
Fourier Transform, results, i.e., the magnitude and phase
for the original and cropped images. The rest parameters
(i.e., ten predictors) are related to the correlation coefficient
based on the probability density function for each sample
image, feature, and class. Thus, all parameters mentioned are
the input signals to the artificial neural network proposed in
order to recognize patterns and classify each image according
to the different skin lesions classes used.

The rest of this article is organized as follows. In Section II,
the general methodology is explained. In particular, subsec-
tion A describe the public information about the images’
database where the diverse skin lesion classes are shown,
subsection B describes the features vector’s determination
process for each sample and type, subsection C explains the
process for the determination of general correlation vector for
each class and, subsection D presents the background needed
in order to understand the neural network used for pattern
recognition. Next, Section III presents the results and analy-
sis, and Section I'V shows the discussion and comparison with
different methods. Finally, conclusions and recommendations
are given in Section V.

Il. METHODOLOGY

A. GENERAL INFORMATION ABOUT THE IMAGE
DATABASE

Firstly, an image database of ten types of skin lesions was
used. These types of skin lesions were established as the
classes. The images were obtained from Edinburgh Dermofit
Library (https://licensing.edinburgh-innovations.ed.ac.uk/i/
software/dermofit-image-library.html ). Table 1 shows the
different categories, the name of the skin lesions, and its
abbreviation, as well as the number of images for each class
that makes up the database. In particular, the ALLBCC,
ALLML, and ALLSK classes have the most significant
number of images, 239, 331, and 257, respectively, while
the remaining categories have a reduced number of images.
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FIGURE 1. Irregularities in the images.

The aforementioned can be an important disadvantage
for the traditional use of artificial neural networks; however,
the determination of the optimal predictors for each class will
be established as a countermeasure to this trade-off.

Because some classes have a large number of images, it is
very common that many images present some differences,
such as the dimension (related to the pixel per inch), bright-
ness, orientation, among others. Also, Fig. 1 illustrates some
image irregularities as stranger objects, black sections, and
images not completely clean, among others. Even considering
the above, our method can process all the images.

B. DETERMINATION OF FEATURES VECTOR FOR EACH
SAMPLE AND CLASS

In this section, we present a detailed description of the process
used to obtain each sample’s features independently of the
classes. Figure 2 shows the first stage of image digital pro-
cessing, which will be described below. First, each original
RGB image ( f ) with n rows x m columns of dimension for
each class (M) is processed by the 2-D Fourier Transform,
according to (1):

n—1 m—1

F(p.gy=y_ Y e @mtemym m), (1)

j=0 k=0

where w represents the spatial frequency between consecutive
signal samples in each dimension n and m, w,, and w,, respec-
tively. As result, F (p, g) is generated, and consequently,

the magnitude (|F (p, ¢)| = \/FR ®, 9+ Fr (p, ¢)*) and
phase (Z|F (p.q)| £ tan™' [F; (p. q)/Fr (p, ¢)]) are cal-
culated based on the real and imaginary parts [29]. Next,
f (n,m) is decomposed in fg(n, m), f(n, m) and fp(n, m)
in order to perform the 2-D Fourier Transform for each
component as follows:

n—1m—1

Fros@.q) =y 3 e @mompe cpnm), ()

j=0 k=0

thus, using Fg g (p,q), the magnitude and phase of
each component (IFg (p, )|, LIFx (. 9)l. |FG (. q)l,
LIFG (p, 9l IFp (p, @)| and Z|Fp (p, g)]) have to be cal-
culated and recorded on the features database. Afterward,
the original image ( f ) is cropped only at the center (f.) to
determine particular aspects of the skin lesion spot, consid-
ering a reduced image dimension and eliminating the most
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information about the health skin section. In this way, the 2-D
Fourier Transform is performed for the cropped RGB image,
which modifies the dimensions n, m, p, and g, as follows [30]:
Fe(p/2,q/2) =
(n/2)—1(m/2)~1
x Y Y P 2 my2). 3)

j=0 k=0

Next, the magnitude (|F; (p/2, ¢/2)|) and phase (£|F.(p/2,
q/2)|) are calculated for the F.(p/2,q/2). Then, the
Fourier spectral information for each color component of
the cropped image are calculated, i.e., Fcr cG.cB (P/2,q/2),
and also the magnitude and phase for each component
are determined, i.e., |Fcg (p/2,q/2)|, L|Fcr (p/2,q/2)l,
IFe (/2,4/D1. L|Feg (0/2.4/2)| . |Fes (/2. 4/2)|  and
L|Fep (p/2, q/2)|. Considering the digital processing carried
out on the original and cropped images, both in RGB format
and in each particular component, a Features Vector, FV s ;
(16 rows and 1 column for each sample, /, of a specific class,
M) for each image and category is created, e.g., 239 feature
vectors for class ALLBCC, 331 feature vectors for class
ALLML, and so on for all the images and classes.

In particular, until now, the Features Vector is composed
of 8 values related to the magnitude and 8 values related to
the phase as Fig. 2 shown. Regarding the magnitude values,
4 values are related to the original size image and the rest
4 values to the cropped image. In the same way, concerning
the phase values. Besides, the 4 values of both magnitude and
phase related to the original size image and cropped image
are strictly related to the RGB image, R-component image,
G-component image, and B-component image.

C. DETERMINATION OF GENERAL CORRELATION VECTOR
FOR EACH CLASS

Figure 3 shows the second stage of the method proposed,
where after having calculated the features vector (F'V ;) for
each one of 1,300 images (V) of the ten different classes (M),
we proceed to calculate the features vector for each particular
class (Vup,, ). Considering that there are 16 spectral indica-
tors or predictors (W) for each image, therefore also Vup,,
will have 16 spectral indicators that will define each class
based on a specific probability density function (pdf’) for each
spectral indicator and class, i.e., pdf (F 3, (1)) [31]-[33], as (4)
shows:

pdf (Fu (1)
= pdf (FVa 1), FVy 11 (), -+ . FVa (D). (4)
Because the probability density function can be different
for each indicator and class, the expected value for each spec-

tral indicator and class, 14, (i), have to be formally calculated

as follows:
o0

Wy () = / Fyr (i) pdf (Fy (DdFp () (5)
—00
Next, all the particular values of ur, ;) are concatenated

to create a particular features vector for each class, such as
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FIGURE 2. Determination of the features vector for each image of each class. The red square represents the

cropped image.
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FIGURE 3. Determination of the correlation coefficients vectors.

Vg, = (WFy 1) REy @), -+ » WFy(16))- Once the V ug, of
all the classes have been calculated, each particular sample of
each class (FV ;) must be correlated with all the Vup,, to
calculate the Pearson’s correlation coefficient, as shown (6)
[34], [35]:

pmi = p(FVm i, Vig,)

1 % FVi1 (i) = ey,
N W -1 i1 OFV.i

(VMFM (D) = WV, )
X

OVur,

(6)

In this way, for each particular sample, there will be ten
correlation coefficients. For example, for sample 1,/ = 1,
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of class 1, M = 1, the complete correlation vector is, p1,1 =
(0 (FVi1,Vig,) . p (FV11, Vieg,) - p (FVLLL Vi, ).

Finally, each image is describing by a 26 rows x 1 column
vector, where the first 16 positions represent the Fourier
spectral indicators related to the original size image and
cropped image as was mentioned in Subsection B, and the
ten positions latest the correlation coefficients between all
classes. The aforementioned in subsection B and C represents
Predictors Rule 1.

D. NEURAL NETWORK DESIGN FOR PATTERN
RECOGNITION

Once the database is completed (26 rows x 1300 columns),
a Two-Layer Feed-Forward Neural Network (TLFN) is
designed (see Fig. 4) with 26 neurons in the input layer,
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TABLE 2. Statistical information related to the classification process for all the classes.

Class Abbrevi  Classified (%)

Misclassified (%)

Standard Deviation (%)

1 ALLME 97.8333 2.1666 +0.6127
2 AK 92.5666 7.4333 +1.0370
3 ALLIEC 93.0666 6.9333 +4.0185
4 ALLDF 91.2666 8.7333 +4.7590
5 ALLSC 96.6 34 +0.8981
6 PYO 59.4 40.6 +4.1012
7 ALVAS 94.4666 5.5333 +(.2222
8 ALLBC 99.2333 0.7666 +0.4713
9 ALLSK 98.7333 1.2666 +0.4108
10 ALLML 99 1 +0.1414
ALLMEL — a) T _é_
Input signals .,‘Q
1— 1
& 15
o
= = —_
=1
2
. £ 10
[ ] m +* +
L 1
Database 25". g
26 x n samples e 5 é
Input layer Hidden O —_
layer ALLSK +
ALLML Training  Validation Testing
OQutput layer
FIGURE 4. Two-layer feed-forward neural network design. B‘E b) + —-—
A . g
100 neurons in the hidden layer allowing the neural network g i
to learn more complicated features. In our case, we are £ g +
using sigmoid functions, which is a non-linear activation ® * 1
function widely used in Logistic Regression processes and i) 6
ANN applications. Also, the ANN proposed uses 10 neurons 8
in the output layer using the softmax activation function. é
It is essential to mention that exists a lot of activation 0 4 —_ |
functions able to use on ANN proposals, such as Step, g., 4 -
Linear, Hyperbolic Tangent, Rectified Linear Unit (ReLU), g 2 ]
Leaky-ReLLU, Swish functions. Each of them presents = —

advantages and disadvantages related to the activation
range, computational load, ANN convergence, among others
[36]-[38].

Besides, it is important to mention that the ANN will
be trained. Therefore, the weight (w) and bias values will
be updated at each iteration independently to minimize the
difference between actual output and desired output using the
Scaled Conjugate Gradient Backpropagation (SCGB) method
[39], [40]. In particular, the sub-dataset used for the Training
stage was 70% (910 images) of the entire samples dataset,
15% for both Validation (195 images) and Testing (195
images). However, each stage’s portion of images can be
modified, maintaining the Training stage’s more significant
image amount. All sub-datasets considered all the classes,
and the image samples used for each sub-dataset were ran-
domly assigned.
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Trai.ning . Valid.ation Tes.ting

FIGURE 5. Cross-entropy and misclassified results for different
sub-datasets.

Ill. RESULTS AND ANALYSIS

The complete algorithm runs 40 times to determine an accu-
rate statistical performance of the 10 classes mentioned.
Firstly, the results related to the Cross-Entropy (natural unit
of information, nats) and the percentage of images that were
not correctly classified in each stage of the artificial neural
network design are shown, i.e., Training, Validation, and
Testing stage [41]. In general, Fig. 5 shows the boxplots as
a method of descriptive statistics for each Training, Vali-
dation, and Testing sub-dataset. Figure 5a) shows that for
the Training stage, the cross-entropy mean value was ~5.21,
which is a good result since it should tend towards zero
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TABLE 3. Performance metrics for training, validation, and testing sub-dataset.

Training
Class Abbreviation Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
1 ALLMEL 99.78+0 97.33+£0.90 99.12 +0.87 99.82 +0.05
2 AK 99.78 £ 0 94.94 £ 1.61 98.27+1.72 99.82 £ 0.06
3 ALLIEC 99.44 +0.11 95.74 +£ 0.09 93.82+1.82 99.76 + 0.05
4 ALLDF 99.78 £ 0.11 95.82+1.95 100£0 99.77+0.11
5 ALLSCC 99.50 + 0.05 95.58 + 1.64 97.81+0.59 99.64 £0.12
6 PYO 99.51 +0.05 100+0 7434 +£2.12 100+0
7 ALVASC 99.28 £ 0.05 93.21+1.15 97.01 £1.29 99.46 £ 0.05
8 ALLBCC 1000 1000 100+ 0 100+ 0
9 ALLSK 99.72 +0.05 99.71+£0.28 98.91+0.51 99.93 +0.68
10 ALLML 99.78 £ 0 99.78 £ 0.22 99.34+0.21 99.99 + 0.08
Validation
1 ALLMEL 99.22 £0.25 92.58 £ 0.27 96.15+3.84 99.44+0
2 AK 99.48 £ 0.51 100+ 0 88.89 £ 11.11 100+ 0
3 ALLIEC 97.42 +£0.52 78.12 £3.12 78.12+3.12 98.62 + 0.30
4 ALLDF 97.93+0.51 73.46 + 3.46 91.66 + 8.33 98.37+£0.02
5 ALLSCC 99.74 +£0.25 100+0 94.44 £5.55 1000
6 PYO 99.22 £ 0.26 75 +25% 62.5+12.5 99.74 £ 0.26
7 ALVASC 9742 +0.15 82.98 £ 10.76 87.5+6.25 98.31£1.12
8 ALLBCC 98.71 £ 0.77 97.22+2.77 95.94 + 1.49 99.36 + 0.63
9 ALLSK 99.48 £ 0 98.61 + 1.38 98.64 + 1.35 99.68 £ 0.31
10 ALLML 99.49+0 100+ 0 97.95+0 100+ 0
Testing
1 ALLMEL 98.19+0.25 74.60 £3.17 80.55+£2.77 98.92 + 0001
2 AK 97.42+1.03 65.27+9.72 74.10£11.60 98.39 + 0.54
3 ALLIEC 96.64 +0.25 83.75+3.75 76.84 £3.15 98.59 £0.26
4 ALLDF 97.68 £ 0.26 78.02 £6.59 75 +£3.57 98.91 +£0.024
5 ALLSCC 98.71 £0.25 79.44 +9.44 100+ 0 98.63 £ 0.021
6 PYO 98.96 £ 0 75+25 41.66 + 8.33 99.74 £ 0.023
7 ALVASC 97.93£0.51 86.90 + 3.57 88.63 £2.27 98.8 £ 0.03
8 ALLBCC 98.96 + 0.50 97.14+£2.85 96.60 + 0.45 99.37 £ 0.62
9 ALLSK 9948 £ 0 98.86 +1.13 98.52+1.47 99.66 + 0.33
10 ALLML 99.48£0 100+0 98.09 +0.09 1000

for a perfect classification. However, for the Validation and
Testing stages, this value was increased, ~14.8 and ~x14.9,
respectively. The minimum and maximum values for Valida-
tion and Testing were similar, ~8.6 and ~17.7, respectively.
Regarding the classification error (see Fig. 5b)), the result for
the Training stage was a mean value of ~2.8% (25 images).

In contrast, for the Validation and Testing stage,
the results were ~5.6% (11 images) and ~5.9% (12 images),
respectively. The Training stage also presents a minimum
and maximum value of 1.101% and 8.14%, respectively.
In comparison, the Validation stage presents a minimum and
maximum value of 2.57% and 10.82%, respectively. These
last values were similar to the Testing stage. Table 2 shows
the related statistical information for all classes, regarding
the percentage of samples classified correctly and incorrectly,
and the standard deviation of classification. To clarify and to
facilitate the analysis, all the tables presented in this article
are based on the information of the 40 confusion matrices
generated according to the 40 algorithm runs. For example,
the class that presents the best performance regarding rec-
ognizing patterns and classification was Class 8, ALLBCC,
which gave a mean value of correct classification of 99.23%,

35212

a percentage of erroneous classification of 0.76%, as well as
a minimum standard deviation, £ 0.4713.

Although the results also show that several classes
(e.g., ALLMEL, ALLSCC, ALLBCC, ALLSK, and
ALLML) present important results, with a mean value greater
than 95% for samples classified correctly. On the other hand,
the class that presents the worst classification performance
was Class 6 (PYO), with a percentage of correct classi-
fication of 59.4% and a standard deviation of + 4.1012.
Besides, according to data science in medicine, evaluating
the performance metrics for the classification for all the
classes is necessary. For that, the Accuracy (A), Precision (P),
Sensitivity (5), and Specificity (SP) metrics were obtained
based on all possibilities regarding the classifications such
as the True Positive (TP) classification, False Positive (FP)
classification, False Negative (FN) classification and the True
Negative (TN) classification [42]. These parameters (i.e.,
TP, FP, FN, and TN) are used to calculate the performance
metrics as follow:

TP + TN
TP+ TN + FP + FN

Accuracy = x 100%, @)
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TABLE 4. General performance metrics of the ANN.

Class  Abbreviation  Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
1 ALLMEL 99.46 +0.07 94.23 £ 0.64 96.71 £ 0.65 99.63 +0.04
2 AK 99.38 +£0.07 90.34 +2.84 9222+ 1.11 99.64 +0.12
3 ALLIEC 98.72 £ 0.03 90.63 +1.02 87.66 + 1.94 99.42 +0.08
4 ALLDF 99.19+0.11 89.79 + 1.38 94.61 +£0.76 99.43 +0.08
5 ALLSCC 99.42 +0.03 93.99+0.51 97.72 £ 0.0001 99.54 + 0.04
6 PYO 99.38 +£0.07 94.09 + 0.34 69.56 +4.34 99.92 +0.0002
7 ALVASC 98.80 +0.19 90.55 + 1.44 93.81 +1.03 99.20 +0.12
8 ALLBCC 99.65 +0.03 99.15 +0.0001 98.95+0.21 99.81 +0.0001
9 ALLSK 99.66 + 0.03 99.41+0.19 98.82 +0.39 99.85 +0.04
10 ALLML 99.69 +0.01 99.48 £ 0.15 98.94+0.15 99.94 + 0.05
. TP
Precision = ——— x 100%, ®)
TP + FP
e TP
Sensitivity = ———— x 100%, &)
TP + FN
Specificity IN £ FP x 100%, (10) (10)

where TP + FP represents the total number of images with
a positive test, TP + FN is the total number of images with
a given condition, TN + FP is the total number of images
without a given condition, FN + TN represents the total
number of images with a negative test, and 7P + TN + FP
+ FN is the total of images in the study. Table 3 shows the
performance metrics values obtained for each sub-dataset,
stage (i.e., Training, Validation, and Testing), and class.
In particular, Class 6 present the worst performance for all
ANN stages. Table 4 shows the performance metrics for the
ANN considering all the sub-datasets, where can be seen
that, concerning the Accuracy and Specificity parameters,
all the classes presented adequate results, A > 98% and
SP > 99%, while the Sensitivity parameter presented the
lowest value for Class 6 (PYO), which is 69.56 & 4.34%.
In this way, the results show that Class 6 (PYO) has the
lowest performance in most of the metrics analyzed. After-
ward, the Receiver Operating Characteristics (ROC) analysis
is determinate [43]. For that, the True Positive Rate (TPR) and
False Positive Rate (FPR) are calculated in order to determine
if the results classifications are relevant or not according to
the relationship between both metrics. Thus, it is important
to mention that TPR is equivalent to the Sensitivity metric
mentioned, while FPR is calculated as follows [44]:
FP

= — (11

FP+TN

In particular, the numerical pair (FPR, TPR) defined as
Proc describes the quality or performance of the classi-
fication, e.g., if the numerical pair is (0,1), it means that
the classifications were completed successfully or correctly
because the Sensitivity and Specificity presented the higher
possible value (i.e., 100 %). In general, the ROC space
related to FPR and TPR is given to determine the clas-
sification quality [45]. However, in our case, two related
parameters will be used as an alternative way to the conven-
tional ROC representation, such as 1) Slope (m) between the

FPR
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FIGURE 6. ROC space based on FRP and TRP values.

FPR and TPR and 2) the magnitude of the numerical pair,
Procv FPR? + TPR?. Thus, to determine if the classifica-
tions were relevant or right (i.e., useful diagnostic category),
two conditions have to be satisfied: 1) m value for each class
must be much higher than 1, i.e., m = TPR/ FPR > 1, and
2) the magnitude value has to be close to unity, Proc =1.
The first condition sometimes is relaxed, considering that the
m value has to be greater than 1.

Figure 6 shows the diverse cases related to matters of
m. In particular, m = 1 means a random classification,
i.e., the diagnostic has the same value for both Sensitiv-
ity and Specificity metrics. When m < 1, the classifica-
tions are not considered adequate (i.e., lousy prediction).
Besides, if m > 1, the classifications are considered very
good, while for m <« 1, the classifications are regarded as
highly non-adequate. It is still necessary to analyze the Proc
value, because the final performance has to consider the two
conditions mentioned.

Next, Table 5 shows the m and Proc values (related to
FPR and TPR) for all the classes. In particular, the m values
for all classes are greater than 1, so this can be considered
that all classes are adequately classified. The classes best
ranked according to m value are those related to ALLSK
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TABLE 5. True positive rate, false positive rate, and slope values for each
class.

Class Abbreviation FPR TPR m Proc
1 ALLMEL 0.0041 0.9671 235.8780 0.9671
2 AK 0.0022 0.9222 419.1818 0.9222
3 ALLIEC 0.0063 0.8766 139.1428 0.8766
4 ALLDF 0.0041 0.9461 230.7560 0.9461
5 ALLSCC 0.0052 0.9772 187.9230 0.9772

PYO 0.0007 0.6956 993.71428 0.6956
7 ALVASC 0.0091 0.9381 103.0879 0.9381
8 ALLBCC 0.0018 0.9895 549.7222 0.9895
9 ALLSK 0.0009 0.9882 1098 0.9882
10 ALLML 0.0001 0.9894 9894 0.9894

and ALLML skin lesions. In contrast, the classes with the
lowest detection quality were associated with ALVASC and
ALLIEC. Even with this, all the classes present a useful clas-
sification considering the slope value. Regarding the Pgroc
value, Classes 8, 9, and 10 (ALLBCC, ALLSK, and ALLML,
respectively) present the best performance, 0.9895, 0.9882,
and 0.9884, respectively, while Class 6 (PYO) shows the
worst performance, 0.6956. In general, and considering the
aforementioned related to both parameters, m and Pgoc,
Class 10 presents the best performance, m = 9894 and
Proc = 0.9894, while Class 6 presents the worst perfor-
mance, mainly based on the that Proc = 0.6956. Due to the
FPR values are so close to zero, the Proc value is very similar
to the TPR value for all the classes.

IV. DISCUSSION
Figure 2 shows that the proposed method considers the cen-
tral cropped image as part of spectral analysis. In this case,
the spectral results of a smaller sample image compared
with a larger original image presents added-noise due to
the spectral windows used by the 2-D Fourier Transform in
both images with different dimensions. As another option
for not crop an image, segmentation algorithms are usually
used to divide an original image into other parts or segments
(i.e., segment only the spot representing the skin lesion).
However, the added-noise is still present due to the reduced
image dimension. Thus, to clarify our proposal, our method
does not compare the Fourier spectral information of images
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FIGURE 7. Graphical description of the intensity profiles.

with different dimensions, e.g., the original image and
cropped image. Instead, the process compares the spectral
information of images with similar dimensions belonging
to the same and different classes. Therefore, it is necessary
to discuss the impact of the added-noise on the proposed
method’s overall performance. For comparing the results of
the proposed method (based on Predictors Rule 1, PR1),
another predictors rule (Predictors Rule 2, PR2) was used,
which consist of three intensity profiles for each axis (Hor-
izontal Intensity Profile, HIP, and Vertical Intensity Profile,
VIP) for each image. Each intensity profile is decomposed
on the real and imaginary parts related to the 2-D Fourier
Transform results. In particular, each intensity profile is
separated 1/8 of the original image dimension for each axis,
as Fig. 7 shows. The analysis was realized in the gray-scale
image and RGB channels. Hence, each image sample is
described by 48 predictors related to the different intensity
profiles. In other words, each image is represented by 12 pre-
dictors for each component R, G, B, and RGB, six predictors
related to the real part (Re) of three intensity profiles for both
horizontal and vertical axes, and the rest predictors are related
to the imaginary part (Im) of three intensity profiles on both
axes.

TABLE 6. Statistical information related to the classification process for all the classes considering the comparison between different predictors rules.

Class  Abbreviation Classified (%) Misclassified (%) Standard Deviation (%)
PR1 PR2 PRI PR2 PRI PR2

1 ALLMEL 97.8333 21.7105 2.1666 78.2894 +0.6127 +6.5010
2 AK 92.5666 11.1111 7.4333 88.8888 +1.0370 +5.1120
3 ALLIEC 93.0666 3.89610 6.9333 96.1038 +4.0185 +1.2311
4 ALLDF 91.2666 5.3846 8.73333 94.6153 +4.7590 +2.5012
5 ALLSCC 96.6 15.3409 34 84.6590 +0.8981 +0.5101
6 PYO 59.4 10.8695 40.6 89.1304 +4.1012 +0.5021
7 ALVASC 94.4666 16.4948 5.5333 83.5051 +0.2222 +0.0121
8 ALLBCC 99.2333 20.1680 0.7666 79.8319 +0.4713 +10.1241
9 ALLSK 98.7333 37.1093 1.2666 62.8906 +0.4108 +9.0110
10 ALLML 99 71.2990 1 28.7009 +0.1414  +11.1012
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Thus, the input signals to the ANN used are represented by
a database of 48 rows x 1300 columns considering the Pre-
dictors Rule 2. Finally, Table 6 shows the performance com-
parison between the predictors’ rules mentioned. As can be
seen, the percentage of correct classification for each class is
much higher for the first predictors rule. Besides, the standard
deviation is much higher for Predictors Rule 2. In general,
considering the aforementioned above, the performance of
the first predictor rule is better for the classification of various
skin lesions, even considering the process of cropping the
image and the added-noise. In particular, Class 10 presents
the best performance for both predictors rules, 99% and
71.2990 % for images correctly classified for PR1 and PR2,
respectively.

Also, the general achieved classification Accuracy, Preci-
sion, Sensitivity, and Specificity percentages of the proposed
method considering the PR1 are 99.33 %, 94.16 %, 92.9 %,
and 99.63 %, respectively, which represents a better perfor-
mance than the reported in [46]. Also, the method proposed
allows to classified a higher number of classes (i.e. ten)
in comparison to [46], [47], but our proposal cannot detect
images that do not belong to any of the ten classes, which is
performed and reported in [46].

V. CONCLUSION

This article presents a new methodology for the discrimi-
nation of 10 skin lesions based on Fourier spectral infor-
mation of images on the RGB additive color model using
a Two-Layer neural network. The method used required
16 spectral parameters and ten correlation coefficients to
generate a highly representative database for all skin lesions
classes. The final classification performance for each cate-
gory was successful based on the values of the Accuracy,
Precision, Sensitivity, Specificity, and Receiver Operating
Characteristics metrics. The best performance was for the
skin lesions images related to Basal Cell Carcinoma, Seb-
orrhoeic Keratosis, and Melanocytic Nevus, i.e., Class 8, 9,
and 10, respectively, while that the worst performance was for
Pyogenic Granuloma skin lesion, i.e., Class 6. As a recom-
mendation that can improve the performance of the proposed
methodology, is the optimization of the predictors, that is,
reduce the dimension of the features vector while maintaining
or improving performance, to prepare the proposed method-
ology for the development of realistic fast applications in the
healthcare sector based on affordable hardware and software.
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